
www.bitdefender.com

Security

S1deload Stealer – Exploring the
Economics of Social Network
Account Hijacking

WHITEPAPER

Contents

Contents
Foreword ... 3
DLL sideloading.. 3
Technical analysis summary ... 4

Initial access ... 5
Defeating string encryption... 8

Dropper (WDSync.dll) analysis ... 10
Loader (iMobieHelper.dll) analysis ... 12
C2 communication module (MVVM.dll) analysis ... 16

C2 communication protocol .. 17
ID generation algorithm .. 21

Chrome controller (ToolsBag.dll) analysis... 22
Hidden Chrome setup ... 22
HTTP server for user interaction simulation ... 24
Hiding and launching the attacker-controlled Chrome ... 27
YouTube boosting JavaScript analysis .. 31

Stealer (CNQMUTIL.dll) analysis .. 36
Cookie theft ... 39
Saved password extraction .. 41
Establishing a Facebook account’s value .. 42

Miner (CNQMUTIL.dll) payload ... 54
Going full circle - convincing the user to download malware .. 57
Upview - the end product of the operation? .. 59
Similarities between components ... 63
Network infrastructure .. 63
Campaign distribution .. 64

Privacy Impact.. 65
MITRE techniques breakdown .. 66
How does Bitdefender defend against the campaign? ... 66

Protection .. 66
Detection .. 67

Conclusion .. 70
References ... 71
Indicators of Compromise ... 72

Hashes ... 72
Domain names .. 72
Yara rules ... 73

Appendix A - String Decryption code .. 75
Appendix B - Server-side perl script .. 80

Author:

David ACS – Security Researcher @ Bitdefender

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

3

Foreword
Social networks, which have grown to occupy a significant portion of our lives, have been abused by criminals since
their inception. With access to multiple legitimate social media accounts, threat actors have been able to extort
significant financial gains, or even manipulate public opinion and change the course of elections. On the everyday
level, financially motivated groups have created malvertising and spam campaigns and set up fully automated farms of
content-sharing websites to increase revenue or sell and rent compromised accounts to other malicious actors.

This paper documents an active malware distribution campaign that abuses social media by taking over users’
Facebook and YouTube accounts. Once in control of the compromised accounts, the malware uses them to boost view
counts on social media.

Through each step of the malware infection chain, the malware author heavily relies on DLL sideloading to avoid
detection. We named this malware family S1deload stealer.
Each executable chosen by the malware author as sideloading victims share similarities:

• They load .NET DLLs from their directory

• They come from well-known software publishers

• They are digitally signed

During our research of the malware’s infrastructure, we also identified the sales website where the malware author
rents out the stolen social media accounts to boost YouTube and Facebook content.

DLL sideloading
Dynamic-Link Libraries (DLLs) are the Microsoft Windows implementation of shared code libraries. Applications may
load DLLs, and call exported functions. If the application doesn’t specify the full path of the DLL at load time, the
Windows Loader searches the DLL in a list of predefined paths called the DLL Search Order. Abusing this behavior is
popular among malware, and Bitdefender outlines the possible abuse vectors. [1]

In short, DLL sideloading is a technique used to hide malicious code in the form of a DLL loaded by a legitimate digitally
signed process. This method is useful when the attacker wants to trick the user into allowing processes to run as
administrator and may sometimes avoid application block rules. This can be done by simply dropping a malicious DLL
into the same folder as a digitally signed process that loads it.

https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

4

Technical analysis summary
The attack starts with a social engineering trick to persuade the user to download an archive named AlbumGirlSexy.zip.

The archive contains three elements:

Name Purpose

AlbumGirlSexy.exe the only visible element in the archive, a digitally signed executable from Western Digital.

WDSync.dll a hidden .NET assembly containing malicious code

data.dat a hidden self-extracting archive containing adult content
Once the user launches AlbumGirlSexy.exe, it will load the hidden WDSync.dll, which starts the infection chain.

WDSync.dll decrypts and writes to disk CNQ.exe along with iMobieHelper.dll in %APPDATA%\Canon. WDSync.dll also
launches data.dat, so that the victim does not suspect a malware infection, as they get the adult content they were
after in the first place.

CNQ.exe is another digitally signed executable from iMobie Inc. used for sideloading iMobieHelper.dll. This .dll is
responsible for downloading the next stage of the malware from the C2 server.

The next stage consists of CompactionTool.exe, another executable digitally signed by Western Digital, and MVVM.dll
dropped in %APPDATA%\BlueStack. MVVM.dll queries the C2 server for tasks to download and execute on the victim’s
machine. The malware can execute multiple tasks in parallel.

We identified three types of tasks in the wild:

Task name DLL name Task purpose

Chrome
controller ToolsBag.dll

Installs Chrome, controlled by the malware author through a malicious
extension to boost YouTube videos.

Stealer CNQMUTIL.dll
Exfiltrates passwords and cookies saved in the browser of the user. Also
evaluates the value of victims’ Facebook profiles.

Cryptojacker CNQMUTIL.dll Mines cryptocurrency without the user’s consent.
The diagram below illustrates the infection chain, where the aim of the attacker is to only install the Chrome controller
task.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

5

In the last six months, between July and December 2022, Bitdefender products detected more than 600 unique users
infected with this malware.

Initial access
The user downloads a .zip file named AlbumGirlSexy.zip. The archives are hosted on infrastructure controlled by the
attacker, as well as on file-sharing websites such as Dropbox. These are some sample URLs that currently serve the
malicious archives:

hxxps://neuka[.]top/AlbumGirlSexy[.]zip
hxxp://dl[.]dropboxusercontent[.]com/s/rm1bs2iddy3oxvm/sexygirl[.]zip?dl=0

The .zip archive contains the following files:

AlbumGirlSexy.exe is a renamed WD Sync Service executable with a valid digital signature from Western Digital.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

6

The .zip contains a hidden WDSync.dll file. When the user executes AlbumGirlSexy.exe, the process loads the .dll.

data.dat is a self-extracting archive containing adult content, which is launched by the malicious WDSync.dll.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

7

From the user’s perspective, launching AlbumGirlSexy.exe results in the launch of the self-extracting archive containing
the expected adult content.

Apart from AlbumGirlSexy.zip name, we noticed the following zip names:

AdsOptimize.zip

AlbumGirlSexy.zip

AlbumPrettyGirl.zip

Album_Lonely_In_Car_So_Yeon_Ha_Seonu_Ryuk_And_Baek_Hyeon_Myung_Kyungsoon_Photography.
zip

Album_Yellow_Dress_Girl_Xiao_Ling_Yan_Shao_Zhengzhong_Mengida_Xiaohui_Photography.zip

Album_Yellow_Dress_Girl_Xiao_Ling_Yan_Yang_Shirong_Fang_Xiurong_Fengge_Photography.zip

HDSexyGirl.zip

Live Soccer TV - Live Football.zip

Play WorldsCup2022 - Live TV App.zip

SexyAlbum.zip

SexyGirlAlbum.zip

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

8

VSBGAlbum.zip

Video_Niko_And_Her_Manager_What_Are_They_Doing_In_The_Office_At_The_Moment.zip

girlleakfull.zip

test.zip

We can see the names of most archives suggest they contain adult content.
However, outliers such as AdsOptimize.zip try to trick the user by pretending to be an ad blocker.

Live Soccer TV - Live Football.zip and Play WorldsCup2022 - Live TV App.zip pose as software that allows viewsers to
watch the World Cup.

Defeating string encryption
All of the analyzed .NET assemblies share the same string encryption scheme. In this chapter, we describe how we
identified string encryption and how we defeated it.

String decryption function description

When analyzing the .dlls we notice that the strings in the binary are missing and are replaced with
function calls to \u0005\u2000.\u00002(<constant_i4>).
The string decryption function looks as shown in the picture below:

The string decryption function uses a dictionary that serves as a cache:

·	 It contains the mapping between string IDs (int) and their already decrypted strings.

·	 If the string has been already decrypted, return it from the dictionary via a call to TryGetValue

·	 If the string has not been decrypted, decrypt it, store it in the cache and return it.

The string decryption algorithm used by the malware is complex and obfuscated, but there is no need to understand it,
as we can bypass it.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

9

Algorithm for defeating string encryption

After identifying the string decryption function, we can take the following steps to replace integer constants with their
string equivalent:

1. identify calls to the string decryption function

2. obtain the string ID passed to the function i.e. a constant i4, pushed on the stack before the call

3. call the decryption function and store the result

4. replace the call to the decryption function with the loading of the string

We have documented the code that implements this algorithm in Appendix A.

In the decryption result, we can see data that appears to be Base64 encoded, so we successfully decrypted the strings.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

10

Dropper (WDSync.dll) analysis
This DLL writes CNQ.exe and iMobieHelper.dll into %APPDATA%\Canon, then launches CNQ.exe.

WDSync.dll is an obfuscated DLL that implements the minimal set of functions used by WD Sync.

The sideloaded executable calls SyncLog.LogMessage from WDSync.dll - the function that the malware author
implemented to hijack the execution of the digitally signed executable.

We consider LogMessage the entry point of the malware since it is the first function called from the malicious
assembly.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

11

After decrypting CNQ.exe and iMobieHelper.dll, the malware uses the File.WriteAllBytes method to write them to
disk.

The LogMessage function has the additional task of adding the malware’s paths to the Windows Defender exclusion
list via WMI.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

12

Loader (iMobieHelper.dll) analysis
iMobieHelper.dll is loaded by %APPDATA%\canon\cnq.exe when the executable starts.
This DLL is responsible for persistence and downloading further components from the C2 server.

The entry point for this DLL is LogMessenger.Init i.e. it is the first function called from the signed executable. We
can see from the screenshot below that the persistence method is similar to the dropper’s persistence.

The Init function also adds the same folders to the Windows Defender exclusion paths in the same way as WDSync.
dll.

Then, at the end of the Init function, it creates a new thread that reaches out to the C2 server to download the next
components.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

13

The loader reaches out to the C2 by fetching an XML, as shown in the screenshot below.

By capturing the traffic with Wireshark, we see that the C2 server is hosted behind Cloudflare.
The request includes the uuid parameter, which is hardcoded in the loader, so it presumably identifies the loader.
Using the uiid parameter, the threat actor can track which loaders are most successful.

The response is an XML which contains a URL to the malware author’s C2 server in /rss/channel/item/
enclosure.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

14

The malware parses the XML and extracts the URL used to download the next component of the malware.

The .zip from the extracted URL is downloaded to the %TEMP% directory with a random GUID name.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

15

After downloading the archive, the malware extracts its contents and runs DiskCompactionTool.exe via RunCmdNoLog.

The downloaded archive contains DiskCompactionTool.exe, a digitally signed WD Backup executable from Western
Digital.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

16

All .dlls are digitally signed, except for MVVM.dll, so our analysis continues with this one.

C2 communication module (MVVM.dll) analysis
This assembly is loaded by DiskCompactionTool.exe, a digitally signed executable from Western Digital, renamed by the
malware author.

This .dll is responsible for ensuring persistence for the digitally signed .exe used by the malware, as well as for
downloading further commands from the attacker’s C2 server neukoo[.]top.

The main entry point of this malicious assembly is Services.Compose, a function called from the
digitally signed executable.

First, the malware achieves persistence via the run key HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
Run\BlueStacks_bgp64. Then the malware launches a new thread similar as in the loader .dll. This thread is responsible
for generating an ID and receiving the next commands from the attacker.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

17

C2 communication protocol
The malware sends a request to hxxp://neukoo[.]top/commonupdate with two parameters:

·	 version that contains the machine’s ID

·	 uuid that is the C2 communication module’s hardcoded ID

The request for C2 communication results in the following traffic, where the response body contains multiple lines.

Each line in the response body is a task for the malware to download and execute.

The malware treats each line individually and splits the lines by |.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

18

Each field in a line serves a different purpose, and they represent the following:

<TimeOutInMiliseconds>|<ExtractZipAndRunUrl>|<CommaSeparatedProcessNamesToKill>|
<AppdataExeName>|<AppdataSubfolderName>|<bool1>|<bool2>|<bool3>|<bool4>|<TaskId>|

Each’s fields purpose is summarized in the table below:

Field’s name Field’s purpose

TimeOutInMiliseconds
How many milliseconds to sleep, after a request to the C2, and before
querying the C2 for new commands.

UrlToExtractZipAndRunUrl

This is a way to deploy new malware on the machine.

It represents a URL which points to URL hosting a .zip, which will be
extracted and run by the malware.

CommaSeparatedProcessNamesToKill List of process names to kill, by their name.

AppdataSubfolderName Where the .zip contents are extracted.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

19

Field’s name Field’s purpose

AppdataExeName

Name of the .exe to launch from AppDataSubfolderName.

The final path looks like this:
%APPDATA%\<AppDataSubfolderName>\<AppDataExeName>

TaskId Identifier of the task.

<bool1-4>
Flags that control clean-up before extracting and running the executable from
the downloaded archive.

Deploying tasks on the victim’s machine

The malware uses the UrlToExtractZipAndRunUrl to download and execute new modules on the infected PC.
The malware receives the following URL from the C2 server in the first line:
hxxp://cdn[.]neukoo[.]top/temps2/Avira.txt

The malware performs a request to this URL, receiving as response another URL:

Finally, the malware downloads and extracts the .zip from the URL, placing the .zip’s contents into AppdataSubfolderName.

The contents of the downloaded .zip are as follows, in this this case Avira.exe is launched after extraction.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

20

Registering Bot with C2 server

When parsing the line i.e. when a new task is executed, the bot makes a request to the attacker’s C2 server with the
TaskId.
The TaskId seems to increment, for every new task received from the C2 server.

Looking at the traffic generated by the bot registering with the C2 server, we can see that the C2 server responds with a
JSON document containing a status and a message. Their meaning is not clear since the bot ignores the response.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

21

ID generation algorithm
We summarize the algorithm with the following formula:
ToHex(MD5(GetCPU(), GetBIOS(), GetMotherBoard(), GetMac()))
The malware queries properties of CPU, BIOS, MotherBoard and MAC, then concatenates the obtained information and
calculates MD5 on the resulting string. Finally, transforming the MD5 output to hex.

Querying of properties is done via WMI, and the result is concatenated, as shown in the screenshot below:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

22

Chrome controller (ToolsBag.dll) analysis
This assembly’s purpose is to create a hidden browser controlled by the malware author via an extension. The
extension sends commands to the browser to boost the view count of videos on YouTube.

Hidden Chrome setup
This assembly is loaded by the signed executable PhoneRescue ExtractHelper from iMobie, renamed as Avira.exe on
the disk. The entry point for the malicious .dll is the Init function called from the signed executable. In the entry point,
it creates a Form that is outside of the visible range for the user:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

23

When the Form loads, it achieves persistence with the same run key as the previous .dll, but with AviraOE as value.

It then determines whether Chrome is installed on the machine and, if it is, the malware copies the found Chrome folder
to %APPDATA%\imageclass\chrome.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

24

If the malware does not find Chrome on the PC, it downloads and extracts legitimate Chrome binaries hosted on the
attacker’s infrastructure.

HTTP server for user interaction simulation
The Chrome controller launches a thread that starts an HttpListener on port 6881, which allows the Chrome
extension to send commands to ToolsBag.dll. The extension will be presented in detail in the next subsection.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

25

The purpose of this HTTP listener is to enable the extension to simulate user interaction. The component implements
the following commands in the HTTP listener:

Command Meaning

click move the cursor within a bounding box and click somewhere inside it.

dag drag the mouse from one set of coordinates to another set of coordinates

wheel simulate mouse wheel movement i.e. scrolling

url download and extract a .zip, running the .exe inside it

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

26

From these commands we only focus on “click”, as the others are similar to “click”.

The malware generates random coordinates within the bounding box and simulates mouse movement towards the
generated coordinates.

Once the mouse is at the targeted coordinates, it sends two messages to Chrome’s windows to simulate the click:

• Message number 513 - WM_LBUTTONDOWN [2]

• Message number 514 - WM_LBUTTONUP [3]

To move the mouse, the malware calculates the distance between the current coordinates and target coordinates, then
gradually moves the mouse towards the target with the help of message number 512 - WM_MOUSEMOVE. [4]

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

27

Hiding and launching the attacker-controlled Chrome
After launching the HTTP server that simulates user input, the malware starts two threads that are responsible for
periodically muting and hiding the attacker-controlled browser from the user.

After hiding the browser, the malware searches the victim’s computer for Chrome-based browsers and copies the
user’s cookies and passwords to a temporary directory that will be used by the newly copied chrome.

Finally, it runs the copied Chrome under the name worker.exe.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

28

When launching the Chrome process, the malware gives the following argument in the command line:

--load-extension=”%appdata%\imageclass\extension”

The extension folder contains the following files:

app.psgi, a server-side component written in Perl, was probably included in the archive accidentally. The Perl script
seems incomplete, as it lacks the code that generates the traffic on the WebSocket. The Perl script is available in
Appendix B.

manifest.json is a Chrome extension manifest that asks for god-mode permissions: accessing all URLs, allowing
filtering all web requests, accessing cookies, local storage and downloading data.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

29

background.js opens a WebSocket to ytb[.]dolala[.]xyz and receives commands from that server.

The commands the extension is able to execute are the following:

Command Purpose

js injects JavaScript commands in the current tab

nav navigates to a new URL

cookies sends all cookies to the WebSocket

url sends the currently selected tab’s URL

screenshot takes a screenshot of the currently visible tab

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

30

The network traffic looks like this on the WebSocket:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

31

The extension receives the commands to open a YouTube video to boost its views.
The extension is also able to send commands to ToolsBag.dll, via HTTP requests on port 6881.

YouTube boosting JavaScript analysis
Boosting a YouTube video means artificially increasing the number of views, likes or comments on the video. YouTube
considers this “Fake engagement,” which violates YouTube Policies. [5]

In the Wireshark capture above, we see multiple JavaScript commands sent to the extension. The first JavaScript
command navigates to youtube.com by setting window.location.href. The second JavaScript command is much
longer, and it contains the video ID of the video to be boosted. The code below is a beautified version of the script:

var videoid = ‘0DVagal1VjY’;
function simulateE(t) {
 var i = check(t);
 if (0 == i) {
 var n = t.getBoundingClientRect();
 httpGet(‘http://localhost:6881/click?x=’ + n.x + ‘&y=’ + n.y + ‘&w=’ +
n.width + ‘&h=’ + n.height);
 } else {
 var n = window, o = document.documentElement;
 httpGet(‘http://localhost:6881/wheel?direction=’ + i + ‘&x=’ + (n.inner-
Width || o.clientWidth || l.clientWidth) + ‘&y=’ + (n.innerHeight || o.clientHeight
|| l.clientHeight)), setTimeout(function () {
 simulateE(t);
 }, 1000);
 }
}
function httpGet(t) {
 var i = new XMLHttpRequest();
 return i.open(‘GET’, t, !1), i.send(null), i.responseText;
}
function check(t) {
 var i = t.getBoundingClientRect();
 if (i.top < 0)
 return 1;
 var n = window, o = document, d = o.documentElement, l = o.getElementsBy-

http://youtube.com

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

32

TagName(‘body’)[0], r = (n.innerWidth || d.clientWidth || l.clientWidth, n.innerHe-
ight || d.clientHeight || l.clientHeight);
 return i.bottom >= r ? -1 : 0;
}
function timdiet(t) {
 try {
 var i, n = Object.prototype.toString.call(t);
 if (‘[object Object]’ == n || ‘[object Array]’ == n)
 for (var o in t)
 if (‘videoId’ == o || ‘addedVideoId’ == o || ‘removed-
VideoId’ == o)
 t[o] = videoid;
 else if (‘videoIds’ == o) {
 if (‘[object String]’ == (i = Object.prototype.to-
String.call(t[o])))
 t[o] = videoid;
 else if (‘[object Array]’ == i)
 for (var d in t[o])
 t[o][d] = videoid;
 } else
 ‘url’ == o ? ‘[object String]’ == (i = Object.proto-
type.toString.call(t[o])) && t[o].indexOf(‘watch?v=’) > -1 && (t[o] = ‘/watch?v=’ +
videoid) : timdiet(t[o]);
 } catch (l) {
 }
}
timdiet(window.ytInitialData);
var nodes = document.getElementsByTagName(‘a’);
for (let e = 0; e < nodes.length; e++)
 nodes[e].href.indexOf(‘watch?v=’) > -1 && (nodes[e].href = ‘https://www.you-
tube.com/watch?v=’ + videoid);
function childerenall(t) {
 timdiet(t.data);
 let i = t.children;
 for (let n = 0; n < i.length; n++)
 childerenall(i[n]);
}
var nodes5 = document.getElementsByTagName(‘ytd-video-renderer’);
for (let e = 0; e < nodes5.length; e++)
 childerenall(nodes5[e]);
var nodes2 = document.getElementsByTagName(‘ytd-compact-video-renderer’);
for (let e = 0; e < nodes2.length; e++)
 childerenall(nodes2[e]);
var nodes4 = document.getElementsByTagName(‘ytd-rich-grid-media’);
for (let e = 0; e < nodes4.length; e++)
 childerenall(nodes4[e]);
var nodes6 = document.getElementsByTagName(‘ytd-playlist-panel-video-renderer’);
for (let e = 0; e < nodes6.length; e++)
 childerenall(nodes6[e]);
var nodes3 = document.getElementsByTagName(‘a’), isok = !1;
for (let e = 0; e < nodes3.length; e++)
 if (‘’ != nodes3[e].href && nodes3[e].href.indexOf(videoid) > -1) {
 var t, i = nodes3[e].getAttribute(‘id’), n = nodes3[e].getBoundingClien-
tRect();
 if ((0 != n.x || 0 != n.y) && (‘video-title-link’ == i || ‘video-title’
== i || ‘thumbnail’ == i)) {
 var o = nodes3[e].getElementsByTagName(‘div’), d = !1, l =

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

33

nodes3[e].closest(‘ytd-rich-item-renderer’);
 if (null != l && void 0 != l) {
 var r = l.getElementsByTagName(‘ytd-thumbnail-overlay-bot-
tom-panel-renderer’);
 if (null != r && void 0 != r && r.length > 0 && (d = !0),
!d) {
 var o = l.getElementsByTagName(‘div’);
 for (let a = 0; a < o.length; a++)
 if (‘progress’ == o[a].getAttribute(‘id’)) {
 d = !0;
 break;
 }
 }
 }
 if (d)
 continue;
 var s = nodes3[e].closest(‘ytd-playlist-panel-video-renderer’);
 if (null != s && void 0 != s && (d = !0), d)
 continue;
 var c = nodes3[e].closest(‘ytd-compact-video-renderer’);
 if (null != c && void 0 != c) {
 var o = c.getElementsByTagName(‘div’);
 for (let h = 0; h < o.length; h++)
 if (‘progress’ == o[h].getAttribute(‘id’)) {
 d = !0;
 break;
 }
 }
 if (d)
 continue;
 simulateE(nodes3[e]), isok = !0;
 break;
 }
 }
isok || (window.location.href = ‘https://www.youtube.com/’);

The script replaces all valid video IDs in the YouTube feed with the video ID it wants to boost. Note that the script does
NOT replace the title of the video, so in the screenshot below the old title “Christmas song 2022” remains.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

34

Next, it searches for a link (<a>) that contains the video ID and is of type video-title-link, video-title or
thumbnail and sends a request to the ToolsBag.dll component with the coordinates of the link to click on it:

http://localhost:6881/click?x=37&y=136&w=319.984375&h=179.984375

The method the malware author uses to navigate to the YouTube video is complex and tries to mimic real user
behavior. We suspect the malware author didn’t simply instruct the browser to navigate directly to the boosted video’s
URL because YouTube detects such simple attempts to boost a video’s view count and flags them.

The third JavaScript command now runs on the page, where the boosted video plays.

function httpGet(b) {
 var a = new XMLHttpRequest();
 return a.open(‘GET’, b, !1), a.send(null), a.responseText;
}
function simulateE(b) {
 var a = b.getBoundingClientRect();
 httpGet(‘http://localhost:6881/click?x=’ + a.x + ‘&y=’ + a.y + ‘&w=’ + a.width
+ ‘&h=’ + a.height);
}
setInterval(function () {
 var b = document.getElementsByTagName(‘path’);
 for (let a = 0; a < b.length; a++)
 if (‘M 12,26 18.5,22 18.5,14 12,10 z M 18.5,22 25,18 25,18 18.5,14 z’ ==

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

35

b[a].getAttribute(‘d’)) {
 var c = b[a].getBoundingClientRect();
 (0 != c.x || 0 != c.y) && simulateE(b[a]);
 }
}, 2000), setInterval(function () {
 var b = document.getElementsByTagName(‘path’);
 for (let a = 0; a < b.length; a++)
 if (‘M 18,11 V 7 l -5,5 5,5 v -4 c 3.3,0 6,2.7 6,6 0,3.3 -2.7,6 -6,6
-3.3,0 -6,-2.7 -6,-6 h -2 c 0,4.4 3.6,8 8,8 4.4,0 8,-3.6 8,-8 0,-4.4 -3.6,-8 -8,-8
z’ == b[a].getAttribute(‘d’)) {
 var c = b[a].getBoundingClientRect();
 (0 != c.x || 0 != c.y) && simulateE(b[a]);
 }
}, 2000), setInterval(function () {
 var b = document.getElementsByTagName(‘div’);
 for (let a = 0; a < b.length; a++)
 if (null != b[a].getAttribute(‘id’) && b[a].getAttribute(‘id’).index-
Of(‘skip-button’) > -1) {
 var d = b[a].getElementsByTagName(‘button’);
 for (let c = 0; c < d.length; c++) {
 var e = d[c].getBoundingClientRect();
 (0 != e.x || 0 != e.y) && simulateE(d[c]);
 }
 }
}, 2000);

It uses setInterval to call three functions every two seconds.

The first function is responsible for starting the video if it stops. It searches for the Play button on YouTube and, if the
script finds the button, it instructs ToolsBag.dll to click it.

The second function re-starts the video if it ends. The function searches for the Replay button on YouTube and if it is
found, sends a request to ToolsBag.dll to click it.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

36

The third function automatically clicks on the Skip Ad button, in a similar way to the previous functions: by searching
for the button, obtaining its bounding box and instructing ToolsBag.dll to click it.

Stealer (CNQMUTIL.dll) analysis
This .NET assembly is a stealer that exfiltrates the saved credentials and cookies from the victim’s browser. If the user

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

37

has a valid Facebook session, the malware leverages Facebook’s Graph API to determine how valuable the account is
for the malware author:

• does the victim pay for ads?

• are any business manager accounts accessible?

• is the account administering any page or group?

This .dll is loaded into Bravia.exe, a digitally signed .exe from Canon. The entry point is the get method from the
FolderPath property, called from the digitally signed executable.

Next, it performs some cleanup: deletes all files in the Temps folder and searches for Local State files in %APPDATA%
and %LOCALAPPDATA%. The purpose of the search is to find Chrome-based browser’s User Data folder that, as its
name suggests, contains user data such as saved credentials and cookies.

For each found Local State i.e. Chrome installation, the malware:

• searches for Chrome profiles by searching for Login Data in the folder of Local State

• loads Local State as JSON and Decrypts the encrypted_key via DPAPI

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

38

The malware author wrote a utility function to decrypt cookies, logins and encrypted_key from Local State. If the
buffer to be decrypted starts with DPAPI (68, 80, 65, 80, 73) it calls ProtecedData.UnProtect [6] on the data to be
decrypted.

If the buffer starts with v10 (118, 49, 48) it performs AES decryption:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

39

Cookie theft
For each profile found by searching for Login Data, the malware extracts the name of the profile, by getting its directory
name. Next, the stealer searches for the Cookies database and copies it to a temporary folder it created at the
beginning.

The malware starts querying cookies from the cookie database:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

40

It decrypts the cookie’s value if it has been encrypted:

Finally, it stores the extracted cookies in a list:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

41

The malware treats Facebook cookies on a different branch, they are extracted into a dictionary, where only the most
recent ones are kept based on Expiration timestamp.

Saved password extraction
Following cookie extraction, the stealer extracts saved passwords from the Login Data SQLite database, in a similar
manner as with cookies.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

42

The malware gathers the credentials (cookies or logins) in a list before exfiltrating them to the C2 server’s /api/logins/
add endpoint.

Establishing a Facebook account’s value
If the user has a valid Facebook session, the malware queries Facebook’s Graph API to see how much influence the
account has.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

43

To achieve this goal, the malware needs an access token it can use to interact with Facebook’s Graph API. To obtain
the token the malware sends a request to https://business.facebook.com/business_locations, a legitimate Facebook
URL, while setting the Facebook cookies it extracted earlier.

The response to this request will include the access token for Graph API, which the malware tries to find by searching
for “EEAG”.

The malware extracts the tokens from DTSGInitialData and LSD fields.

https://business.facebook.com/business_locations

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

44

If the malware failed to extract the access token, it tries again with Facebook’s account billing URL. From the response
received, the malware tries to extract the access token found after the AdsCMConnectConfig field.

Having a valid access token, it queries all Ad Accounts [7] associated to the user and parses the response.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

45

The malware stores the results in a list, and adds the default account with status -1.

Knowing an account’s status is useful for the attacker, as they can burn their spamming campaign if it is associated
with an account that is suspended. account_status can take the following values [14]:

1 = ACTIVE

2 = DISABLED

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

46

3 = UNSETTLED

7 = PENDING_RISK_REVIEW

8 = PENDING_SETTLEMENT

9 = IN_GRACE_PERIOD

100 = PENDING_CLOSURE

101 = CLOSED

201 = ANY_ACTIVE

202 = ANY_CLOSED

For each ad account ID, it queries the following values that indicate how Much Facebook trusts the account:

• adspaymentcycle (deprecated) [8]

• currency

• name

• adtrust_dsl

• amount_spent

• created_time

The malware exfiltrates the received response along with account_status and the access token to the C2 server’s /
api/google endpoint.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

47

We performed the same query on a test Facebook account to show what kind of information the threat actors can
access:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

48

Next up, the malware queries and exfiltrates the Pages [9] [10] associated with the user, their follower count and
verification_status to the /api/google2 endpoint.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

49

Sample output with a test page, showcasing that the malware can determine whether the page is verified, and what
kind of permissions the account has over the Page.

Next up, the malware queries and exfiltrates the Pages [9] [10] associated with the user, their follower count and
verification_status to the /api/google2 endpoint.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

50

Next up, the malware queries each business associated with the user using Facebook’s Graph API:

We created a test business account to see the kind of data that the malware sample would have access to and queried
the same endpoint as the malware:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

51

For each business, it queries adAccountLimit i.e. the number of Ad accounts that can be created under this
Business Manager account.

Notice that the malware adds “BM” before the adAccountLimit number.

BM stands for Business Manager. These kinds of accounts are rare and expensive due to the Facebook verification
process.

Business Manager account for sale on accfarm[.]com for $40:

Next up, the malware queries each business associated with the user using Facebook’s Graph API:

We created a test business account to see the kind of data that the malware sample would have access to and queried
the same endpoint as the malware:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

52

Sample response for the querying for adAccountLimit:

Finally exfiltrating the gathered data about the businesses to the C2 server’s /api/google3 endpoint:

The final query is about the user: the malware interrogates Facebook’s Graph API of the groups they are administering.
The malware component exfiltrates the results to the /api/google4 endpoint of the C2 server. [11]

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

53

In our testing, this API always returned an empty array even if the user was administering a group.

According to documentation, this feature was removed. [12]

After the malware finishes exfiltrating data from Chrome-based browsers, it performs nearly identical steps for Firefox:

• exfiltrates cookies

Sample response for the querying for adAccountLimit:

Finally exfiltrating the gathered data about the businesses to the C2 server’s /api/google3 endpoint:

The final query is about the user: the malware interrogates Facebook’s Graph API of the groups they are administering.
The malware component exfiltrates the results to the /api/google4 endpoint of the C2 server. [11]

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

54

• exfiltrates saved logins

• performs same Facebook profile checks

Miner (CNQMUTIL.dll) payload
This payload is a cryptojacker. We found this payload and the archive containing it while hunting for samples similar to
the ones already presented. This assembly is loaded by App3.exe, a renamed digitally signed executable from Canon.

The entry point for this DLL is the get method of the FolderPath property called by the digitally
signed executable.

It reaches out to the C2 to receive mining instructions.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

55

It sends the video controller’s description to the C2 server and uses the response received to decide whether to start
mining.

Launches miner.exe and sends its output to the C2 server, so the threat actor can monitor the mining progress.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

56

The miner .dll is contained in an archive named Beam.rar, where a miner.exe is also present.

Based on the analysis of this archive, we can see that miner.exe is miniZ. [13]

How profitable is mining for the malware author?

Based on the logs in the archive, we can extract the user ID that the malware author uses and the pool server:

Combining the user id and the pool server, we can estimate how much the malware author earns from the mining.

At the time of writing, 17 active miners are associated with this address, yielding ~202 BEAM monthly, $24 at the
current exchange rate.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

57

This is a small amount for the effort the malware author has to go through to infect machines.
It also explains why we found very few samples that perform mining: it is simply not worth the effort to push miners.

Going full circle - convincing the user to download malware
While hunting for similar archives to AlbumGirlSexy.zip we found a sample that served at hxxps://dl[.]micbig[.]top/
SexyGirlAlbum[.]zip?random=abcde according to VT.

A google search of the domain leads to the Facebook page named The Best moment.

The recent posts on the Facebook page seem out of context and lure the user to click on the links with the promise of
adult content.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

58

The post linking to micbig[.]top was removed from Facebook, but it is still available for inspection via the Google Cache:

After navigating to the URL from the deleted Facebook post (hxxps://micbig[.]top/eokr1236) we are redirected to

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

59

hxxps://neuka.top/AlbumSexy.zip. After the Cloudflare verification, the .zip is downloaded.

The zip’s contents are similar to the ones we have seen before. The main difference is that CloudFuze is sideloaded
with CloudFuzeUtility.dll instead of WD Sync. This shows that the malware author actively develops the malware
infection chain to avoid detection.

The malware author can therefore create a feedback loop: the more PCs they can infect, the more they can spam on
Facebook, the more clicks they can generate to infect more PCs.

Upview - the end product of the operation?
While searching for other domains used by the malware author, shopproxy[.]live stood out, because it was one of the
oldest registered domains: it was registered on 2022-03-14.

Searching for the domain on Google, we get hits on Facebook posts, similarly to the previous domain.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

60

The posts attempt to lure the user with adult content to click on the link and download the content being served there.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

61

Our initial assumption was that once we clicked the link, we would be prompted to download AlbumGirlSexy.zip, closing
the loop we saw previously.

Instead of serving the expected .zip, the webpage redirects to hxxps://upview[.]us/, where a landing page advertises
that, for the right price, the user can buy YouTube views.

Once we register, we see that two main services are offered:

YouTube boosting

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

62

Facebook boosting

These are the same two services that the malware’s final payload targets.

The domain is registered with the following contact information. The registrant’s contact information may be fake: the
last name The Viet seems like a nickname, and the organization’s name is a very generic Pay. The street name is the
name of a province in Vietnam.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

63

Similarities between components
The sideloaded .NET DLLs share similarities, even if they have different purposes.

They share the persistence mechanism, the string decryption function, the registry utility functions and the helper
functions used for extracting zips.

These similarities show that the codebase is developed by a single individual or small organization.

Network infrastructure
We observed multiple domains registered and used by the attacker, but some patterns emerged.

Each of their servers is behind Cloudflare.

Subdomains/endpoints serve the same purpose on different domains:

subdomain / URL Purpose

cdn.<domain>

dl.<domain>

Delivers static content, such as chrome64.zip or task that
should be executed

<domain>/Canon/sparkle-windows.
xml

Used by loader to download C2 component

<domain>/commonupdate Querying C2 for tasks to unpack and execute

<domain>/api/task/update
Updating the status of the task with the C2 i.e. when a new
task is executed

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

64

ytb.<domain>:8080
Websocket sending commands to extension used for youtube
view boosting.

log.<domain>/api/logs6 Used for logging exceptions occurring during bot execution

cdn.<domain>/log.php
cdn.<domain>/lol3.php
cdn.<domain>/lolda.php

Used by mining payload to obtain mining parameters

<domain>/api/google
<domain>/api/google2
<domain>/api/google3
<domain>/api/google4
<domain>/api/logins/add

Credential stealing component sends its output to these URLs

Campaign distribution
We observed more than 600 users affected by this malware in our telemetry.

Below you can find the heatmap:

Below you can find the Campaign evolution:

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

65

Privacy Impact
S1deload stealer has serious privacy implications for the victim infected with it. The malware exfiltrates the victim’s
saved credentials, including email, social media or even financial accounts. The threat actor can access these
accounts or sell them on the dark web.

With access to the victim’s accounts, threat actors can perform identity theft or blackmail the victim and threaten to
expose their private information on a public website if they do not comply.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

66

MITRE techniques breakdown

Execution Persistence Defense Evasion
Credential
Access

Command
and Control

Exfiltration Impact

User
Execution:
Malicious
File

Hijack
Execution
Flow: DLL
Side-Loading

Deobfuscate/Decode
Files or Information

Credentials
from
Password
Stores:
Credentials
from Web
Browsers

Application
Layer
Protocol:
Web
Protocols

Exfiltration
Over C2
Channel

Resource
Hijacking

Native API

Boot or
Logon
Autostart
Execution:
Registry
Run Keys
/ Startup
Folder

Hide Artifacts: Hidden
Files and Directories

Steal Web
Session
Cookie

Hide Artifacts: Hidden
Window

Hijack Execution Flow:
DLL Side-Loading

Masquerading: Match
Legitimate Name or
Location

How does Bitdefender defend against the
campaign?
For our testing, we installed the latest version of BEST in a virtual machine. We chose the first archive from the Lure
archives section as the test payload. We extracted the archive and double clicked on AlbumGirlSexy.exe as a victim
would.

Protection
Initially, we set BEST’s policies to block threats as soon as possible.

The Dropper was detected by Anti-Malware engines as soon as AlbumGirlSexy.exe was executed, stopping the attack in
its tracks.

https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1555/003/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1564/001/
https://attack.mitre.org/techniques/T1564/001/
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1564/003/
https://attack.mitre.org/techniques/T1564/003/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1036/005/

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

67

Detection
To test the detection and visibility of our product throughout the entire infection chain, we adjusted BEST’s policies to
not block malicious processes, only report them to the console.

Bitdefender detects each process presented in the infection chain, alongside their .dlls.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

68

The graph view allows a system administrator or SOC analyst to view detailed information about the infection, such as
the registry keys used for persistence or the URL of the C2 server.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

69

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

70

Conclusion
In this article, we presented S1deload stealer, which infects victims’ PCs, steals users’ credentials, and uses the PCs as
bots for farming YouTube views, spamming on Facebook pages and cryptojacking.

The malware sideloads its components into legitimate applications throughout the infection chain to avoid detection
by AVs. After establishing communication with the C2 server, the malware can take control of the machine, as it can
download and execute additional components.

The stealer component we observed in the wild steals the saved credentials from the victim’s browser, exfiltrating them
to the malware author’s server. The malware author uses the newly obtained credentials to spam on social media and
infect more machines, creating a feedback loop.

The malware author monetizes the machines it controls by selling YouTube and Facebook boosting services. The
Chrome controller component starts a hidden browser on the victim’s machine and instructs it to repeatedly play
YouTube videos.

To defend against this threat, only execute software that originates from a trusted source, and keep your antivirus up to
date.

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

71

References
[1] https://businessinsights.bitdefender.com/tech-explainer-what-is-dll-sideloading

[2] https://learn.microsoft.com/en-us/windows/win32/inputdev/wm-lbuttondown

[3] https://learn.microsoft.com/en-us/windows/win32/inputdev/wm-lbuttonup

[4] https://learn.microsoft.com/en-us/windows/win32/inputdev/wm-mousemove

[5] https://support.google.com/youtube/answer/3399767?hl=en

[6] https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.protecteddata.unprotect?view=dotnet-
plat-ext-7.0

[7] https://developers.facebook.com/docs/marketing-api/business-asset-management/guides/ad-accounts

[8] https://developers.facebook.com/docs/graph-api/changelog/version3.0/

[9] https://developers.facebook.com/docs/graph-api/reference/user/accounts/

[10] https://developers.facebook.com/docs/graph-api/reference/page/

[11] https://developers.facebook.com/docs/graph-api/reference/v15.0/group

[12] https://developers.facebook.com/docs/graph-api/reference/v15.0/user/groups

[13] https://miniz.ch/

[14] https://www.blackhatworld.com/seo/why-your-fb-account-is-banned-api-check.1246056/

https://businessinsights.bitdefender.com/tech-explainer-what-is-dll-sideloading
https://learn.microsoft.com/en-us/windows/win32/inputdev/wm-lbuttondown
https://learn.microsoft.com/en-us/windows/win32/inputdev/wm-lbuttonup
https://learn.microsoft.com/en-us/windows/win32/inputdev/wm-mousemove
https://support.google.com/youtube/answer/3399767?hl=en
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.protecteddata.unprotect?view=dotnet-plat-ext-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.protecteddata.unprotect?view=dotnet-plat-ext-7.0
https://developers.facebook.com/docs/marketing-api/business-asset-management/guides/ad-accounts
https://developers.facebook.com/docs/graph-api/changelog/version3.0/
https://developers.facebook.com/docs/graph-api/reference/user/accounts/
https://developers.facebook.com/docs/graph-api/reference/page/
https://developers.facebook.com/docs/graph-api/reference/v15.0/group
https://developers.facebook.com/docs/graph-api/reference/v15.0/user/groups
https://miniz.ch/
https://www.blackhatworld.com/seo/why-your-fb-account-is-banned-api-check.1246056/

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

72

Indicators of Compromise

Hashes

Lure archives

78cbd99e68bf630bb57e5207c3aa830729f8a6c882ab194bd16a87fdf79e4483
e593682d3bebfec43accfe51f7760cc3b70dd774ae5f63dc9aa51c86ba4f8044
d047c3c62eebdd959eff8cb83bccb19f5579c47141d87948ce018afa119e7013
4db454a99ece9b30c29e12b245e76726b824a05f023ce73527be3cb5c1e1ba3a

Dropper

4899ec50e71a1a7a1e45b805382fc59dc2ff7dcb164a898bab85d30ca83256cf

Loader

a4d03e64906d46d6966c2fefe84c5e0bf9c85f12137a1bcf45639941b68e90da

C2 communication module

e7987a21897de6f41b58c06ef64f85acfd1c6cc78eb01ad3d8963839c70cb10e

Chrome controller

2799c2a302164626c77dd73bf755981be3ff159cc0d2e85c1c54b620fd815132

Stealer

f0f37a2f0c07538a2382f52c540d41077f98c5acf6d6e029260a488bcf165688

Miner archive

ed2c61f801516e0d357541048b980e074068a7ebe8cc3393c6f3ea1115e1201c

Miner

6e6c590f10504eec5f426f86630f1b9dd73a5e5990a4bd4bc4371591c478fdd6

Domain names
appfree.club

dolala.xyz

micbig.top

mictobig.xyz

napala.top

neuka.top

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

73

neukoo.top

shopproxy.live

papazz.xyz

poloke.top

programe.top

progriu.top

puname.top

ubutun.xyz

Yara rules
import “pe”

rule S1deloadStealer_Registry
{
 meta:
 author = “Acs David - Bitdefender”
 date = “2022-12-05”
 hash = “2799C2A302164626C77DD73BF755981BE3FF159CC0D2E85C1C54B620FD815132”

 strings:
 $reg_util_namespace = “RegistryUtils”
 $reg_util_get_registry_value = “GetRegistryValue”
 $reg_util_set_registry_value = “SetRegistryValue”

 $set_persistence_instructions = { 28 [6-8] 2C [2-3] 74 [6-8] 16 91 18 2E ??
1F 0C 8D [6-8] 16 18 9C [2-4] 20 [4] 28 [4] 20 [4] 28 [4] 11 ?? 19 17 28 }

 condition:
 pe.is_pe
 and filesize <= 1MB
 and pe.imports(“mscoree.dll”)
 and (all of them)
}

rule S1deloadStealer_ID_generation
{
 meta:
 author = “Acs David - Bitdefender”
 date = “2022-12-05”
 hash = “F0F37A2F0C07538A2382F52C540D41077F98C5ACF6D6E029260A488BCF165688”

 strings:
 $get_msuuid = “getMSUUID”
 $id_generation_code = { 1F 09 8D [4] 0? 0? 16 20 [4] 28 [4] A2 0? 17 28 [4]
A2 0? 18 20 [4] 28 [4] A2 0? 19 28 [4] A2 0? 1A 20 [4] 28 [4] A2 0? 1B 28 [4] A2 0?
1C 28 [4] A2 0? 1D 20 [4] 28 [4] A2 0? 1E 28 [4] A2 0? 28 [4] 28 [4] 0B DE }

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

74

 condition:
 pe.is_pe
 and filesize <= 1MB
 and pe.imports(“mscoree.dll”)
 and (any of them)
}

rule S1deloadStealer_PDB_path
{
 meta:
 author = “Acs David - Bitdefender”
 date = “2022-12-05”
 hash = “”

 condition:
 pe.is_pe
 and pe.pdb_path contains “C:\\Users\\KienTi\\Documents”
 and filesize <= 1MB
 and pe.imports(“mscoree.dll”)
}

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

75

Appendix A - String Decryption code
using System;
using System.Reflection;
using System.Linq;
using dnlib.DotNet;
using dnlib.DotNet.Emit;
using System.Collections.Generic;
using dnlib.DotNet.Writer;

namespace DecryptStrings
{
 class Decryptor
 {
 private ModuleDef module;
 private Assembly assembly;
 private string modulePath;
 private string functionName;

 public Decryptor(string ModulePath, string FunctionName)
 {
 module = ModuleDefMD.Load(ModulePath);
 assembly = Assembly.LoadFrom(ModulePath);
 modulePath = ModulePath;
 functionName = FunctionName;
 }

 public void Decrypt()
 {
 MethodDef decryptionMethod = FindDecryptionFunction();

 Console.WriteLine($”Found decryption function with MD: {decryptionMeth-
od.MDToken}”);

 var typeQueue = new Queue<TypeDef>(module.Types.Where(t => t.HasMethods
&& !t.IsGlobalModuleType));
 while(typeQueue.Count() > 0)
 {
 TypeDef type = typeQueue.Dequeue();

 // decrypt strings in nested types as well.
 foreach (var nestedType in type.GetTypes())
 {
 if (nestedType.HasMethods)
 {
 typeQueue.Enqueue(nestedType);
 }
 }

 foreach (MethodDef method in type.Methods.Where(m => m.HasBody))
 {
 DecryptStringsInMethod(method, decryptionMethod);
 }
 }
 }

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

76

 private MethodDef FindDecryptionFunction()
 {
 var list = new List<MethodDef>();
 foreach (TypeDef type in module.Types.Where(t => t.HasMethods && !t.Is-
GlobalModuleType))
 {
 foreach (MethodDef method in type.Methods.Where(m => m.HasBody))
 {
 if (IsDecryptionFunction(method))
 {
 list.Add(method);
 }
 }
 }

 if(list.Count() != 1)
 {
 throw new Exception($”found {list.Count()} decryption function in-
stead of 1”);
 }

 return list.First();
 }

 private bool IsDecryptionFunction(MethodDef method)
 {
 if (string.IsNullOrEmpty(functionName))
 {
 // function name not given by user, try to find it using pattern
matching.

 if (!method.IsStatic)
 {
 return false;
 }

 if (method.GetParamCount() != 1)
 {
 return false;
 }

 if (!method.HasReturnType)
 {
 return false;
 }

 if (!method.ReturnType.FullName.Contains(“System.String”))
 {
 // return value is not string
 return false;
 }

 return IsBodyMatchingDecryptionFunction(method.Body);
 }
 else
 {

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

77

 // function name given by user, use it.
 return method.Name.Contains(functionName);
 }
 }

 private bool IsBodyMatchingDecryptionFunction(CilBody body)
 {
 // perform pattern matching on body of function.
 List<Instruction> instructions = body.Instructions.ToList();
 bool hasCallVirt = false;
 bool hasCallVirtTryGetValue = false;
 bool hasCallInstruction = false;
 int callInstructionIndex = 0;

 for (int i = 0; i < instructions.Count(); i++)
 {
 Instruction currentInst = instructions[i];
 if (currentInst.OpCode == OpCodes.Callvirt)
 {
 if (hasCallVirt)
 {
 // there should be only one callvirt instruction in method
body.
 return false;
 }

 hasCallVirt = true;

 var method = (IMethod)currentInst.Operand;
 string methodString = method.ToString();
 if (methodString.Contains(“Dictionary”) && methodString.Con-
tains(“TryGetValue”))
 {
 hasCallVirtTryGetValue = true;
 }
 }

 if (currentInst.OpCode == OpCodes.Call)
 {
 var calledMethod = (IMethod)currentInst.Operand;
 string calledMethodString = calledMethod.ToString();

 if (calledMethodString.Contains(“System.Threading.Moni-
tor::Enter”))
 {
 // ignore this call as they are used in implementation of
lock keyword.
 continue;
 }

 if (calledMethodString.Contains(“System.Threading.Monitor::Ex-
it”))
 {
 // ignore this call as they are used in implementation of
lock keyword.
 continue;
 }

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

78

 if (hasCallInstruction)
 {
 // there should be only one call instruction in method
body. (besides lock calls).
 return false;
 }

 hasCallInstruction = true;
 callInstructionIndex = i;
 }
 }

 // check for pushing true before calling function.
 if (callInstructionIndex <= 0)
 {
 // call is first instruction
 return false;
 }
 Instruction beforeCall = instructions[callInstructionIndex - 1];

 if (beforeCall.OpCode != OpCodes.Ldc_I4_1)
 {
 return false;
 }

 return hasCallVirtTryGetValue && hasCallInstruction;
 }

 private void DecryptStringsInMethod(MethodDef Method, MethodDef Decryption-
Method)
 {
 bool wereInstructionsModified = false;

 IList<Instruction> instructions = Method.Body.Instructions.ToList();
 for (int i = 0; i < instructions.Count; i++)
 {
 Instruction currentInstruction = instructions[i];
 if (currentInstruction.OpCode != OpCodes.Call)
 {
 continue;
 }

 IMethod calledMethod = (IMethod)currentInstruction.Operand;
 if (!calledMethod.MDToken.Equals(DecryptionMethod.MDToken))
 {
 continue;
 }

 // current instruction is a call to the string decryption function.
 if (calledMethod.GetParamCount() != 1)
 {
 throw new Exception(“We currently handle decryption functions
with a single param!”);
 }

 // get previous instruction, should be a ldc.i4

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

79

 Instruction prevInstruction = instructions[i - 1];
 if (!prevInstruction.IsLdcI4())
 {
 Console.WriteLine($”[WARNING] skipping Decryption function
call, as it has invalid arg (prev instruction)!, while processing: {Method.Full-
Name} MD: {Method.MDToken}”);
 continue;
 }

 int stringId = prevInstruction.GetLdcI4Value();
 MethodBase methodBase = assembly.ManifestModule.ResolveMethod(-
calledMethod.MDToken.ToInt32());

 // call the method
 string decryptedString = (string)methodBase.Invoke(null, new ob-
ject[] { stringId });

 // replace the call instruction with a load string.
 instructions[i] = OpCodes.Ldstr.ToInstruction(decryptedString);

 // nop out ldc.i4
 prevInstruction.OpCode = OpCodes.Nop;
 wereInstructionsModified = true;
 }

 if (wereInstructionsModified)
 {
 // Console.WriteLine($”new body for: {Method.MDToken}”);
 // overwrite method’s body with modified instruction, but keep ev-
erything else intact.
 CilBody body = Method.Body;
 Method.Body = new CilBody(body.InitLocals, instructions, body.Ex-
ceptionHandlers, body.Variables);
 }
 }

 public void Save()
 {

 var options = new ModuleWriterOptions(module);
 options.MetadataOptions.Flags |= MetadataFlags.KeepOldMaxStack;

 string decryptedPath = modulePath + “.decrypted”;
 module.Write(decryptedPath, options);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 if (args.Length != 1 && args.Length != 2)
 {
 Console.WriteLine(“usage: <assemblyPath> [<functionName>]”);
 return;
 }

 string functionName = null;

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

80

 string assemblyPath = args[0];
 if (args.Length > 1)
 {
 functionName = args[1];
 }

 Console.WriteLine($”decrypting: {assemblyPath}”);
 Decryptor decryptor = new Decryptor(assemblyPath, functionName);
 decryptor.Decrypt();

 Console.WriteLine(“saving decrypted file to disk.”);
 decryptor.Save();
 }
 }
}

Appendix B - Server-side perl script
use strict;
use warnings;
use utf8;
use AnyEvent::Handle;
use Plack::Builder;
use Protocol::WebSocket::Frame;
use Protocol::WebSocket::Handshake::Server;

my %channel;
my @message;

builder {
 mount ‘/websocket’ => sub {
 my $env = shift;
 my $fh = $env->{‘psgix.io’} or return [500, [], []];

 my $hs = Protocol::WebSocket::Handshake::Server->new_from_psgi($env);
 $hs->parse($fh) or return [500, [], [$hs->error]];

 my $code = sub {
 my ($handle, $message) = @_;

 if (defined $handle and ref($handle) eq ‘AnyEvent::Handle’ and defined
$message) {
 my $frame = Protocol::WebSocket::Frame->new(type => ‘text’, buffer
=> $message);

 $handle->push_write($frame->to_bytes());
 }
 };

 return sub {
 my $respond = shift;
 my $frame = Protocol::WebSocket::Frame->new(version => $hs->version);
 my $h = AnyEvent::Handle->new(fh => $fh);

Bitdefender Whitepaper
S1deload Stealer – Exploring the Economics of Social Network Account Hijacking

81

 $channel{fileno($fh)} = $h;

 $h->push_write($hs->to_string);

 $code->($h, $_) for @message;

 $h->on_read(sub {
 $frame->append($_[0]->rbuf);

 while (my $msg = $frame->next) {
 push @message, $msg;

 for (values %channel) {
 $code->($_, $msg);
 }
 }
 });

 $h->on_error(sub {
 warn “[ERROR]: @_”;

 delete $channel{fileno($fh)};

 $h->destroy;

 undef $h;
 });
 $h->on_eof(sub {
 delete $channel{fileno($fh)};

 $h->destroy;

 undef $h;
 });
 }
 };
};

Bi
td

ef
en

de
r-P

R-
W

hi
te

pa
pe

r-S
1d

el
oa

dS
te

al
er

-c
re

at
66

69
-e

n_
EN

02
/1

0/
23

Fe
br

ua
ry

 2
2,

 2
02

3
11

:4
5

am
02

/2
2/

23

Founded 2001, Romania

Number of employees 1800+

Headquarters

Enterprise HQ – Santa Clara, CA, United States

Technology HQ – Bucharest, Romania

WORLDWIDE OFFICES

USA & Canada: Ft. Lauderdale, FL | Santa Clara, CA | San Antonio, TX |
Toronto, CA
Europe: Copenhagen, DENMARK | Paris, FRANCE | München, GERMANY |
Milan, ITALY | Bucharest, Iasi, Cluj, Timisoara, ROMANIA | Barcelona, SPAIN
| Dubai, UAE | London, UK | Hague, NETHERLANDS

Australia: Sydney, Melbourne

UNDER THE SIGN OF THE WOLF

A trade of brilliance, data security is an industry where only the clearest view, sharpest mind and deepest insight can
win — a game with zero margin of error. Our job is to win every single time, one thousand times out of one thousand,
and one million times out of one million.

And we do. We outsmart the industry not only by having the clearest view, the sharpest mind and the deepest insight,
but by staying one step ahead of everybody else, be they black hats or fellow security experts. The brilliance of our
collective mind is like a luminous Dragon-Wolf on your side, powered by engineered intuition, created to guard against
all dangers hidden in the arcane intricacies of the digital realm.

This brilliance is our superpower and we put it at the core of all our game-changing products and solutions.

About Bitdefender
Bitdefender is a cybersecurity leader delivering best-in-class threat

prevention, detection, and response solutions worldwide. Guardian

over millions of consumer, business, and government environments,

Bitdefender is one of the industry’s most trusted experts for

eliminating threats, protecting privacy and data, and enabling cyber

resilience. With deep investments in research and development,

Bitdefender Labs discovers over 400 new threats each minute and

validates around 40 billion daily threat queries. The company has

pioneered breakthrough innovations in antimalware, IoT security,

behavioral analytics, and artificial intelligence, and its technology is

licensed by more than 150 of the world’s most recognized technology

brands. Launched in 2001, Bitdefender has customers in 170+

countries with offices around the world.

For more information, visit https://www.bitdefender.com.

All Rights Reserved. © 2022 Bitdefender.

All trademarks, trade names, and products referenced herein are the property of their respective owners.

	Foreword
	DLL sideloading
	Technical analysis summary
	Initial access
	Defeating string encryption

	Dropper (WDSync.dll) analysis
	Loader (iMobieHelper.dll) analysis
	C2 communication module (MVVM.dll) analysis
	C2 communication protocol
	ID generation algorithm

	Chrome controller (ToolsBag.dll) analysis
	Hidden Chrome setup
	HTTP server for user interaction simulation
	Hiding and launching the attacker-controlled Chrome
	YouTube boosting JavaScript analysis

	Stealer (CNQMUTIL.dll) analysis
	Cookie theft
	Saved password extraction
	Establishing a Facebook account’s value

	Miner (CNQMUTIL.dll) payload
	Going full circle - convincing the user to download malware
	Upview - the end product of the operation?
	Similarities between components
	Network infrastructure
	Campaign distribution

	Privacy Impact
	MITRE techniques breakdown
	How does Bitdefender defend against the campaign?
	Protection
	Detection

	Conclusion
	References
	Indicators of Compromise
	Hashes
	Domain names
	Yara rules

	Appendix A - String Decryption code

