
Petya Ransomware
Goes Low Level
Petya Ransomware Analysis and Full Details on
Bitdefender’s Vaccine Preventing File Encryption

[2]

Contents
Executive Summary... 3

Key Findings.. 3

What’s the big deal with Ransomware?... 3

How Petya Ransomware Works... 4

Similarities with other Ransomware Families.. 5

Reverse Engineering Petya Ransomware... 7

How the Decryption Key is Transmitted.. 12

About Bitdefender.. 14

Authors

Razvan Benchea - Team Leader Malware Research
Vatamanu Cristina - Malware Researcher
Maximciuc Alexandru - Malware Researcher
Liviu Arsene - Senior E-Threat Analyst

Copying/extracting/republishing parts or entire document is strictly prohibited without PRIOR WRITTEN APPROVAL from Bitdefender.

All Rights Reserved. © 2016 Bitdefender. All trademarks, trade names, and products referenced herein are property of their respective owners.

[3]

Executive Summary

The new Petya ransomware seems to have been built with speed in mind, as to expedite the encryption process.
While traditional ransomware encrypts files one by one, Petya encrypts the location containing all information
about disk files, such as size, permissions, and data content, essentially preventing users from accessing all
their data.

While this low level approach allows for the same file-restricting outcome as traditional ransomware, it’s a lot
faster in terms of encryption time, as the ransomware no longer has to encrypt each file at a time. Instead,
it only encrypts the NTFS MFT (Master File Table). However, this approach makes cryptography extremely
difficult to implement, increasing the probability of making mistakes in the cryptographic functions.

Bitdefender was able to analyze the Petya ransomware and offer potential victims a tool that intercepts the
encryption process and offers the decryption key, free of charge. Most importantly, the tool needs to be installed
prior to being infected - not afterwards – in order to perform its function correctly.

Key Findings

·	 Potentially same developers as the ones behind Chimera and Rokku ransomware families;

·	 Works faster - Petya doesn’t encrypt files; it encrypts the NTFS Master File Table (MFT);

·	 Features its own bootloader and Kernel – few ransomware families have that;

·	 Reverse engineered by Bitdefender to offer a free tool that assists in decryption of NFTS MFT (third-
party tools have become available, but they’re more difficult to use).

What’s the big deal with Ransomware?

Ransomware incidents inflicted an estimated $24.1 million1 in financial losses in 2015, according to 2,453
reported hackings. With 13 million U.S. users encountering some form of ransomware, our own studies have
shown that 50 percent2 of them would actually pay to regain access to their data.

Difficult to detect and even more difficult to crack it’s encryption on users’ files, ransomware has made its way
beyond the Windows operating system, hitting Linux, Mac and even Android3. While its behavior varies widely
– from simply displaying a lock screen to encrypting all stored files – the ultimate goal is to force users to pay
ransom, in bitcoins.

Motivated by financial gains and with advanced technical skills, cybercriminals have constantly “innovated”
in terms of new ways of encryption, delivery mechanisms, and even locking out users without encrypting the
actual files on their disks, as you’ll soon learn from this paper detailing how the new Petya ransomware works.

Ransomware is one of the nastiest forms of malware to date, not only because it generates immense revenue
streams for cybercriminals, but also because the encryption it uses to deny users access to their own files is
usually impossible to crack. Although some variants have exhibited weaknesses4 in the encryption process,
sometimes even allowing security experts to develop vaccines5 for particular infections, ransomware remains
1	 http://www.usnews.com/news/business/articles/2016-04-05/5-ways-to-become-a-smaller-target-for-ransomware-hackers
2	 http://download.bitdefender.com/resources/files/News/CaseStudies/study/59/Bitdefender-Ransomware-A-Victim-Perspective.pdf	
3	 http://download.bitdefender.com/resources/files/News/CaseStudies/study/85/Android-Malware-Threat-Report-H2-2015.pdf
4	 https://labs.bitdefender.com/2016/01/third-iteration-of-linux-ransomware-still-not-ready-for-prime-time/
5	 https://labs.bitdefender.com/2016/03/combination-crypto-ransomware-vaccine-released/

http://www.usnews.com/news/business/articles/2016-04-05/5-ways-to-become-a-smaller-target-for-ransomware-hackers
http://download.bitdefender.com/resources/files/News/CaseStudies/study/59/Bitdefender-Ransomware-A-Victim-Perspective.pdf
http://download.bitdefender.com/resources/files/News/CaseStudies/study/85/Android-Malware-Threat-Report-H2-2015.pdf
https://labs.bitdefender.com/2016/01/third-iteration-of-linux-ransomware-still-not-ready-for-prime-time/
https://labs.bitdefender.com/2016/03/combination-crypto-ransomware-vaccine-released/

[4]

particularly difficult to thwart.

The usual modus operandi for ransomware remains constantly the same. The infection vector is usually
comprised either of malicious ads disseminated trough legitimate websites or infected attachments promising
urgent invoices or even hiring CVs – as was the case with Petya.

To this end, ransomware relies on some form of user interaction with the dropper (a.k.a. the user-presented
file), socially engineering users into single handedly executing the infected file and getting the ransomware. A
carefully crafted spearfishing email will have a significantly high success rate, guaranteeing sufficient victims
to make it worthwhile for cybercriminals.

The following steps are usually the same from one ransomware variant or family to another, and usually revolve
around something like this:

·	 The dropper downloads a payload that’s executed locally;

·	 Connects to a C&C and uses a public key to encrypt local data (traditionally);

·	 Displays a message asking the victim to pay a ransom;

·	 Once payment is successful, contacts the C&C server and gets the decryption key;

While the entire process seems pretty straightforward, there’s no actual guarantee that the victim will ever get
the decryption key – although the cybercriminals have been honest in most cases – nor that they’re actually
telling the truth about encrypting the data.

In some instances, cybercriminals only displayed a message – granted, difficult to remove – on screen, trying
to scare victims into paying and leverage past ransomware experiences that have plagued the internet. While
no actual data is encrypted, some users do end up paying cybercriminals anyway.

A major issue with ransomware is that it’s extremely easy to get your hands on – for a mere $3,000 you can get
your own ransomware kit6 - and it’s extremely profitable, with an estimated7 return on investment of 1,425%.
Put that on the dark web and you’ll find that dozens of non-tech-savvy individuals – but with an entrepreneurial
sense of making money – will be willing to get their hands on it and start making money.

How Petya Ransomware Works

Petya usually arrives via email containing a Dropbox URL or an attachment, and the executable usually differs
from one dropper to another. It mostly uses clean executables - java update checker 2.8.73.2; jucheck.exe, picasa
3.9.141.259, google crash handles 1.3.29.5, SumatraPDF Installer 3.1.1, and installers in Inno Setup format - that
were infected with Petya.

The malicious code appears to be inserted manually, as it’s present at different offsets. While the entry-point
remains unchanged, the executable code that includes the decrypter, the loader, and the Petya DLL is placed
at different offsets within the code. While we didn’t find any executable that has the Petya code inserted at the
beginning, it’s probably because the malware developer wanted to avoid being detected by security software
that scans network traffic. It’s safe to assume these executables have been created manually.

Another interesting aspect of these executables is that the original icon has been changed and replaced with
a PDF or WinRar icon.

After the executable is loaded by the dropper in user mode, the malware tries to decrypt the code that will be
used for the bootloader. It does this by first searching the section with the name “.xxxx”. After this, it starts
decrypting it with a simple algorithm.

6	 http://www.hotforsecurity.com/blog/cryptolockercryptowall-ransomware-kit-sold-for-3000-source-code-included-13020.html
7	 http://www.darkreading.com/analytics/cybercrime-can-give-attackers-1425--return-on-investment/d/d-id/1320756

http://www.hotforsecurity.com/blog/cryptolockercryptowall-ransomware-kit-sold-for-3000-source-code-included-13020.html
http://www.darkreading.com/analytics/cybercrime-can-give-attackers-1425--return-on-investment/d/d-id/1320756

[5]

Once decryption is complete, it gathers information about the hard disk. It finds the partition where the
operating system is installed and opens it in raw mode.

It detects the type of the partition table (GPT or MBR) and if ii is GPT, it encrypts the backup of the partition
header.

It then continues to encrypt the first sector, by doing a xor ‘7’ operation on each byte. Following this, it continues
to generate the encryption key according to the algorithm presented below. Once this is over, it overwrites the
first sector with the code decrypted from xxx section (the one that will do the salsa encryption) and it encrypts
33 sectors starting with the second one.

The primary encryption process finishes with the copying of the encryption key to sector54, with the overwrite
of sector55 with character ‘7’ and with the saving of the original MBR (xor-ed with ‘7’) to sector56.

To shut down the system, it first tries to acquire SeShutdownPrivilege and, if it succeeds, it calls the function
NtRaiseHardError with an argument that causes the system to display the BSOD.

Petya is somewhat different from what we’ve been used to with Cryptowall, Cryptolocker or other ransomware
families that we’ve been hearing about for the past couple of years. The biggest difference is that it doesn’t
encrypt files per se, but encrypts the filesystem’s master file table (MFT) responsible for telling the operating
system where all disk files are located. Consequently, the entire encryption process takes far less time, as it
doesn’t have to encrypt each file, and uses algorithms that should make the process irreversible unless you
have the decryption key.

Executing the Petya payload triggers the user account control (UAC), without the ransomware even trying
to bypass it. Socially engineering users into clicking “Yes” without acknowledging the risks associated with
running unknown applications is not a new practice, and still seems to work.

Afterwards, it overwrites the master boot record (MBR) with Petya’s bootloader, makes an encrypted backup
of the data, then crashes the operating system with a BSOD (blue screen of death). During this stage the data
can actually be recovered – provided you have turned off automatic restart after a system failure. That’s because
only the beginning of the disk (MBR) has been overwritten. By “overwritten” we in fact mean that the first
33 sectors (starting with the second), along with the first 33 sectors where the MBR backup is located, get
encrypted using a simple XOR ‘7’. It then places its encryption key in sector 54 and then start filling sector 55
with ‘7’s. Basically, even multiple modifications can all be resolved. Mounting the disk on another operating
system and making a backup is possible at this stage.

However, if the system boots up after the BSOD, it displays a fake CHKDSK scan that’s actually encrypting the
MFT using a Salsa108 algorithm. At this point, it is theoretically possible to bruteforce the decryption and read
the contents of the disk.

The MFT is responsible for maintaining entries – including size, time and date stamps, permissions and data -
for every file on the NTFS file system volume, including the MFT itself. Consequently, having an encrypted MFT
means there’s no way to access those files without the decryption key.

Similarities with other Ransomware Families

While Petya is clearly more complex than other ransomware, it shares some similarities with two of them
in particular, namely Chimera and Rokku. This could indicate that the same attacker might be behind all of

8	 https://en.wikipedia.org/wiki/Salsa20

	 key = 0x6b81;
	 for (int i = 0; < bufferSize; i++)
	 	 buffer[i] ^= key%(i + 1);

https://en.wikipedia.org/wiki/Salsa20

[6]

them, or maybe a common framework was used for all three. When compared to Chimera, the distribution
method is very similar: both Petya and Chimera were distributed via spam campaigns and both contained
a link to a file uploaded via Dropbox. More interestingly, both families were distributed via spam messages
written in German. Correlations can be found even when looking at the file name. Both malware families come
in binaries that have double extension or end with PDF, and in some cases the file name is the same (e.g.
“BewerbungsmappePDF.exe”).

More information can be found when looking inside the binaries themselves, as Petya and Chimera seem to
use the same dropper. In both cases, the main component of the malware is located inside a dll file, which
has only one exported function. The dll file is further loaded by another component located inside the dropper.
What stands out is that the loader and the main component are encrypted and inserted into the code section
of a known and benign executable file at an arbitrary offset.

The encryption algorithms used by Chimera are again similar to the ones used by Petya, but with some
differences. Chimera also relies on CBC and CTR variations of the AES algorithms, and it also uses an elliptic
curve for the public key encryption. However, while it uses the secp256k1 elliptic curve instead of secp192k1, it
doesn’t use the Salsa20 algorithm. It is also worth noting that both families implement encryption algorithms
and don’t rely on Windows API functions.

Following these observation, we compared the two main binaries to see how many of their functions were
similar. Using BinDiff9, we determined that 57 functions have a similarity of over 90% and 28 functions are
identical. More so, the BinDiff plugin reports that the two binaries have a similarity of 42.7% with a confidence
of 87.37%. A printscreen that shows similar functions can be seen below.

9	 https://www.zynamics.com/bindiff.html

https://www.zynamics.com/bindiff.html

[7]

Among the similar functions found are some that generate 128 random bytes using CryptGenRandom, and
one that initializes only one structure out of 20 allocated, for generating random bytes based on the sha512
algorithm.

Analysts from Malwarebytes10 reported that Rokku ransomware also shows similar features to the chimera
ransomware. This claim is also supported by other evidence. Like Petya and Chimera, Rokku uses the same
methods of loading the main dll file and the malware component. The malicious content is also embedded into
the code section of a benign file at an arbitrary offset.

Rokku, like Petya and Kimera, uses an elliptic curve algorithm to generate the key for the public key encryption
algorithm. What is more interesting is that Rokku, like Petya, uses the same algorithm for encryption.

Reverse Engineering Petya Ransomware

This is where it all gets technical. In the following section we will dive into the malware’s code and understand
each step of the encryption process and how cryptography works.

Before we start, it’s worth mentioning that an interesting aspect of Petya is the number of algorithms it uses
to generate a random key. Besides the fact that it generates random bytes using a safe Windows function, it
also calls for various other algorithms, such as variations on SHA512 and AES variations with different keys, to
individually generate a random character. While the process is somehow impractical as long as it starts from
random bytes, it’s still worth mentioning as it is specific to this malware family.

Generating Salsa20 key

The first step in obtaining the Salsa20 encryption key is to generate a unique password.
The password is a 16 bytes buffer containing characters from the following set
‘123456789abcdefghijkmnopqrstuvwxABCDEFGHJKLMNPQRSTUVWX’.

The selected character is chosen based on a generated DWORD:

To obtain these DWORDs the following steps are executed:

1.	 Generate buffer of 0x80 random bytes:

2.	 Obtain the shaKey

10	 https://blog.malwarebytes.org/threat-analysis/2016/04/rokku-ransomware/

https://blog.malwarebytes.org/threat-analysis/2016/04/rokku-ransomware/

[8]

It will compute a sha512 hash on this buffer:

This resulted hash is part of a buffer used to obtain a second hash . The format of the buffer is as following:

The second temp hash wold be a SHA512 on a buffer containing:

-	 NoStruct: the number of the used structure (value 0)

-	 sizeSHATemp: (value 64)

-	 SHATemp: the SHA hash computed on the buffer containing the 0x80 random bytes

The final SHA hash value is SHA512 function on a buffer represented by the last sha hash. So to summarize:

shaFinalHash = SHA512(SHA512(makeBuffer(0,64,SHA512(buffer_of_0x80_random_bytes)))

The first stage of the key is represented by the first 0x30 bytes of the shaFinalHash

The shaKey is used next in the salsa key generation.

2.Encrypt the shaKey

First an AES-CBC is used:

SHA512

sizeSHATempNoStruct SHATemp

SHA512

SHA512

sizeSHATempNoStruct bufferRandom0x80bytes

[9]

Source: Wikipedia11

The plain text is a buffer that, among other elements, contains the shaKey. The initial IV is a zero bytes buffer
and the initial key is a buffer containing the values from 0 to 31.

The resulted cipherText is used as a initial key in a AES-ECB algorithm

Source: Wikipedia12

The plainText in this case is the second 16 bytes block from the cipherText.

3.	 Update the main AES key

The 16 iterations (for each character of the password) share another AES context; lets call it main AES context.
After the AES-ECB is executed, the resulted cipherText is used to update the main AES key through a XOR
opeation.

The buffer used to encrypt at the next iteration is represented by the last 16 bytes of the updated key.

Each dword used to obtain the characters from the salsa key is obtain by encrypting one more time using the
main AES context:

The main AES context is applied in an AES-CTR algorithm.

11	 https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
12	 https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29

[10]

Source: Wikipedia13

In summary, to obtain the password used to generate the salsa key, the following steps are done:

After generating the password, the 32 bytes salsa encryption key is obtained and stored on sector 0x36
(16->32):

13	 https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29

for (i=0;i<16;i++){
	 //generate the random buffer
	 randomBuffer = generateRandomBuffer()
	

//get the SHA final key
	 shaKey = getShaKey(randomBuffer)
	

// encrypt the key
	 //AES-TYPE(plainText, context, cipherText)
	 aes-cbc-context = initializeContext(Aes-cbc-key)

AES-CBC(shaKey, aes-cbc-context, cipherText_AES-CBC)
aes-ecb-context = initializeContext(cipherText_AES-CBC
AES-ECB(plainText, aes-ecb-context, cipherText_AES-ECB)

//update the main AES key
AES-CTR(main-buffer-to-encrypt, main-context, cipherText_AES-CTR)
cipherText_AES-CTR ^= cipherText_AES-ECB
main-buffer-to-encrypt = cipherText_AES-CTR[-16:]

//get dword
AES-CTR(main-buffer-to-encrypt, main-context, cipherText_AES-CTR)

	 Copy(currentDword, cipherText_AES-CTR)

	
//update the main AES key
AES-CTR(main-buffer-to-encrypt, main-context, cipherText_AES-CTR)
cipherText_AES-CTR ^= cipherText_AES-ECB
main-buffer-to-encrypt = cipherText_AES-CTR[-16:]

//get char for password
currentChar = base54Alphabet[currentDword % 54]

}

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29

[11]

The Salsa20 encryption key stored in sector 0x36 (0x36 *0x200 = 0x6c00)

Following the algorithm, the password would be -> xsC9CAuLWBwjpLt9

The structure for the 0x36 sector is as follows:

·	 The first byte can be 0 (not encrypted, hence it can be encrypted), 1 (it has been encrypted), and 2 (it
has been decrypted)

·	 The next 32 bytes are the key.

It’s important to note that the key, although it has 32 bytes, is derived from a 16 byte key. The key will be
overwritten with 0 as soon as it start encrypting, meaning the key will be there only if the first byte is 0.
Immediately afterwards is an .onion link where the user has to input the decryption key.

At the 169 offset there’s the “Personal Decryption Code,” that’s actually the decryption key, encrypted with the
secp192k1 elliptic curve.

After reboot following Salsa20 encryption:

[12]

Using the password, the decryption is done.

After it finishes, it displays a message prompting the user to restart his machine.

How the Decryption Key is Transmitted

Since the malware performs the encryption in an environment with no internet connection, it has no way of
transmitting it to the attacker. To receive the decryption key, the victim has to go to the tor address displayed
by the ransomware and enter the Personal Decryption Code.

The Personal Decryption code is actually the salsa20 encryption key encrypted with public key cryptographic
system. The steps taken to construct the Personal Decryption Code are as follows:

First, a pair of public and private keys is generated for the infected victim using the secp192k1 elliptic curve.

[13]

We will call these PubKeyV and PrivKeyV. The attacker also has a pair, but only its public key is known. We will
call the public key for the attacker PubKeyA , while the private is called PrivKeyA.

PubKeyA is hardcoded in the binary:

The next step is to generate a key that will be used in encryption. This is generated based on a value (called
shared secret or ECDHE) that each part can compute based on its personal private key and the peer’s public
key.

The shared secret is computed by multiplying the private key with the peer public key.

It computes a hash over the SharedSecret, using the sha512 algorithm and will use the first 32 bytes as the
encryption key for the AES256 algorithm.

Using this key, will encrypt the salsa20 key. However, before it does this it first xors the salsa20 key with the
first 16 bytes from the victims public key.

For the attacker to obtain the Salsa20 key, it needs the EncryptedSalsaKey as well as the victim’s generated
public key. Thus it makes a buffer containing the generated public key, which is 49 bytes, and the encrypted
salsa key, which is 16 bytes long.

	

The final thing that must be done is to transform each buffer into a printable one. It does this using base58
encoding (https://en.wikipedia.org/wiki/Base58). It doesn’t use 64 encoding to prevent the user from confusing
characters that look very similar (such as l and I or 0(zero) and O). After this is done, it performs a SHA256 hash
on the resulted string and prepends the first byte of the hash, in hexadecimal format, to the base58 string. This
is used as checksum over the resulted string.

	

For the attacker to obtain the Salsa20 key, he has to reverse the above steps. The only thing that is different
is obtaining the TransferEncryptionKey. He can compute the key in a similar way to the one performed on the
victim’s computer. The shared secret value (ECDHE) is computed by multiplying the victim’s public key (which
is encoded in the Personal Decryption Code) with the private key of the attacker. Due to how the keys are
generated on a public key cryptography system, the shared secret will have the same value.

The Truth About the Petya Ransomware
While ransomware is usually extremely resilient in terms of using strong encryption to deny access to all disk
files, Petya goes about it differently, by preventing the file system from reading the contents of the disk. This
approach has obvious performance benefits as it’s a lot faster than going through each disk file and encrypting
it, and it’s just as effective.

Malware developers behind Petya exhibit some in-depth low level-knowledge about how Microsoft’s file system
technology works, along with advance assembly language skills, needed to create their own bootloader and
design a user interface for bitcoin payment.

With most ransomware usually running in user mode, the overall user experience is usually consistent and
allows victims to easily interact with the ransomware and pay the fee. Since with Petya this was not the case

PubKeyA=04C480AF982B11269CB438A01C4679A8329B5A5F4E800C869EA3D52677F3261EC88DD171ECA5A9066F4D8F26
DCA648FEF9

SharedSecret = PubKeyA*PrivKeyV

TransferEncryptionKey = Sha512(SharedSecret)[0:32]

EncryptedSalsaKey = AES256(salsa20key ^ PubKeyV[0:16], key=
TransferEncryptionKey);

PersonalBuffer = PubKeyV,EncryptedSalsaKey

PrintablePersonalBuffer = Base58Encoding(PersonalBuffer)
	 PersonalDecryptionCode = Sha256(PrintablePersonalBuffer)[0],
PrintablePersonalBuffer
PersonalBuffer = PubKeyV,EncryptedSalsaKey

[14]

as they decided to go with a custom – outside the operating system – interface, the overall user experience is
cumbersome and clunky.

While the skills necessary to write the Petya ransomware have scored high marks, ransomware is usually
about making it easy for the victim to pay while at the same time making it impossible to regain access to their
files without the decryption key.

Those that have experience a Petya ransomware infection are strongly encouraged to download the Bitdefender
Petya Ransomware Vaccine now!

Note: While the Bitdefender Petya Ransomware Vaccine does not protect against encryption, its purpose is
to make decryption a lot easier. Particularly, in case of Petya infection, the user will be presented with the
decryption key so he can start decrypting his data immediately.

Below, you’ll find an actual screenshot with how the Bitdefender Petya Ransomware Vaccine provides the
decryption key.

About Bitdefender

Bitdefender is a global security technology company that delivers solutions in more than 100 countries
through a network of value added alliances, distributors and reseller partners. Since 2001, Bitdefender has
consistently produced award-winning business and consumer security technology, and is a leading security
provider in virtualization and cloud technologies. Through R&D, alliances and partnership teams, Bitdefender
has elevated the highest standards of security excellence in both its number-one-ranked technology and its
strategic alliances with the world’s leading virtualization and cloud technology providers. More information is
available at http://www.bitdefender.com/.

http://download.bitdefender.com/am/cw/BDAntiRansomwareSetup.exe
http://download.bitdefender.com/am/cw/BDAntiRansomwareSetup.exe
http://www.bitdefender.com/

[15]

Publication Date: April 2016

BD
-N

G
Z-

Ap
r.1

9.
20

16
-T

k#
: 8

68
47

	Executive Summary
	Key Findings
	What’s the big deal with Ransomware?
	How Petya Ransomware Works
	Similarities with other Ransomware Families
	Reverse Engineering Petya Ransomware
	How the Decryption Key is Transmitted
	About Bitdefender

